4
THE CHEMICAL POTENTIAL

4.1 Chemical potential in the grand canonical ensemble at zero
temperature

In the last chapter were obtained the principal equations of the
density-functional theory of electronic systems, the equations for the
determination of the electron density and the energy for a ground state
or equilibrium state of a system of interest. For the ground state, E[p]
reaches its minimum among densities p that integrate to the number of
electrons N for the system of interest, where E[p] is given by (3.2.3) or
(3.4.9). For an equ111br1um state at temperature 6 in a canonical
ensemble, A[p] reaches its minimum among densities p that integrate to
N, where A[p] is given by (3.5.15). And for an equlibrium state at
temperature @ and chemical potential g in a grand canonical ensemble,
Q[p] reaches its minimum among all p, where Q[p] is defined by
(3.6.12).

We are particularly interested in the zero-temperature limit, for at
6 =0 (B =), the equilibrium state and ground state become one and
the same—the state of primary interest to us. As 8 goes to zero, the term
6S[p] disappears from A[p] of (3.5.15) and Q[p] of (3.6.12). At this
limit, do the corresponding variational principles remain valid? The
answer does not follow from the arguments of §3.5 and §3.6, for in the
proofs of the theorems of those sections the concavity of the entropy

S[[], as a functional of the density operator, plays a vital role. Detailed
analysis for each case is needed. In this section and the next two, we
consider the grand canonical ensemble. We take up the canonical
ensemble in §4.4.

In the limit as § tends to infinity, the universal functional F[p] defined
in (3.6.10) becomes

Foclp(r)] = Min Tr [(E(T + V.l (4.1.1)

This is the universal ground-state functional proposed by Perdew, Parr,
Levy, and Balduz (1982). It extends Levy’s constrained search to general
dens1ty operators [ in Fock space (grand canonical ensemble). In (4.1.1),
V., is written in place of the general particle—particle interaction potential
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U because we specialize henceforth to electronic systems. The grand
potential at §— « correspondingly reduces to

Qp = Foclpl + [ p(e) v ()~ ) dr

= Eqclp] —uN (4.1.2)

into which enters the grand-canonical-ensemble energy functional

Eodlp] = Foclpl + [ pleyo(@) dr (4.13)

Note that both Q[p] and Egc[p] are defined for densities integrating to
any finite positive number, in contrast with E[p] of (3.4.9), which is
defined only for densities integrating to positive integers.
Assume now the f-—»o limit of the QI'] variational principle of
(3.6.9),
Q%= E%N) — uN < Tr ['(A — uN) (4.1.4)

where E°(N) and g are the energy and the chemical potential of the
ground state with N electrons. Following the prescription of (3.6.9), the
corresponding density-functional variational principle is then

E°(N) ~ N = Eqclp(®)] - | p(e)de (4.1.5)

from which follows the variational equation for the ground-state electron
density and energy

6{Ecc[p] —u f p(r) dr} =0 (4.1.6)
and the Euler—Lagrange equation
SEgc[p]
k=0 4.1.7
sor) " @17
Equivalently,
8Fsc(p]
o Tu(@—p=0 4.1.8
5p(x) (r)—u (4.1.8)

In the last equation, it has been assumed that Fsc[p] is differentiable [see
Englisch and Englisch (1984a,b) for discussion of the validity of this
assumption].

We now show that (4.1.4) is not true in general [see Blaizot and Ripka
1986, p. 410)]; nevertheless, it is valid for atomic and molecular systems.
Consider a trial I' that describes a ground state with the average number



T2 DENSITY-FUNCTIONAL THEORY 4.1

of electrons N + AN = Tr ['N. Then we have from (4.1.4),

E°(N) — uN <E°(N + AN) — u - (N + AN) (4.1.9)
Similarly, from another [" with Tr['N = N — AN,
E%N)— uN<E°%N ~AN)—pu - (N — AN) (4.1.10)
It follows from (4.1.9) that if E°(N) is a differentiable function,
3E°(N)
=N (4.1.11)
Adding (4.1.9) and (4.1.10), we obtain
E°(N + AN) + E°(N — AN) — 2E°(N) =0 (4.1.12)

which demands that the function E°(N) be convex (see Appendix B). If
E%(N) is twice differentiable, then (4.1.12) implies

3*E°(N)
—W =0 (4. 1. 13)

Conditions (4.1.11) and (4.1.12) or (4.1.13) are also sufficient to
guarantee the validity of (4.1.9). See the theorem before Equation (B.13)
in Appendix B.

Setting AN =1 in (4.1.12), we see that

E°(N +1) — E°(N) = E%(N) — E°(N — 1) (4.1.14)
or
I(N +1)= I(N) (4.1.15)

where I(N) is the ionization potential of the N-electron ground state.
Equation (4.1.15) states that successive ionization potentials are not
decreasing (for fixed external potential).

For atoms and molecules, no counterexample is known to (4.1.15),
although a first-principles proof has never been given. As examples, in
Table 4.1 we list all of the successive ionization potentials for the oxygen
and carbon atoms; in Figure 4.1 we plot the energy of oxygen as a
function of the number of electrons, determined from the formula

E(N)=~ ;?‘:‘1 I(M) (4.1.16)

Phillips and Davidson (1984) give examples of nonconvex E°(N), though
not for electronic systems.

Summarizing the foregoing, we have shown that for systems for which
E°(N) is convex, including atoms and molecules, the zero-temperature
limit of grand-canonical-ensemble theory exists, as manifest in (4.1.4),
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Table 4.1 Ionization Energies for Carbon and Oxygen

Species Ionization Species Tonization
Potential Potential
(eV) (eV)
Cc” 1.12 O~ 1.47
C 11.26 (¢} 13.61
ct 24.38 o* 35.15
o 47.86 o* 54.93
c3+ 64.48 o** 77.39
c** 391.99 o 113.87
c+ 489.84 o+ 138.08
o8+ 739.08
o 871.12

(4.1.5), and (4.1.6). The chemical potential in these equations is the
zero-temperature limit of the chemical potential defined for the finite-
temperature grand canonical ensemble,
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Figure 4.1 Energy (in electron volts) of the oxygen atom and its ions.
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where A is the Helmholtz free energy. In this book we generally use the
symbol u to designate this zero-temperature limit, writing

_(?E) =i (BA) 4.1.18
NN/, ™ 650 \oN/ e (4.1.18)
and we simplify the notation in (4.1.6), (4.1.7), and (4.1.8) to give
O{E[p] - uNlp]} =0 (4.1.19)
and
OE OF|[p]
U= [ ] 4.1.20
ol " VO 55 (4.1.20)

Equations (4.1.19) and (4.1.20) are the basic working equations of the
ground-state density-functional theory for atoms, molecules, and solids.

4.2 Physical meaning of the chemical potential

The chemical potential of density-functional theory measures the escap-
ing tendency of an electronic cloud. It is a constant, through all space, for
the ground state of an atom, molecule, or solid, and equals the slope of
the E versus N curve at constant v(r). The analogy with the chemical
potential of ordinary macroscopic thermodynamics is clear and useful.
The chemical potential is the negative of the electronegativity of
Pauling and Mulliken (Parr, Donnelly, Levy, and Palke 1978). For, the
three-pomt finite-difference approximation to 3E/N for a species S is
I I+4
u — 4.2.1)
where I=EJ—Eg and A=Egs—Eg are respectively the ionization
potential and electron affinity for the species. And Mulliken’s formula for
electronegativity (Mulliken 1934) is

I+A
v = (4.2.2)
2
Therefore
U= =M (4.2.3)

and the chemical potential concept is the same as the electronegativity
concept.

Mulliken’s beautiful argument for (4.2.2) is as follows. Given two
species, S and T, which is the more electronegative? The energy required
for S to take an electron from T is It — Ag, while the energy requirement
for T to take an electron from S is I; — Ay. If the two requirements were
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the same, we would have equal electronegativities:
IT—AS=IS‘—AT’ IS+AS=IT+AT

The factor 3 is arbitrary.

Density-functional theory is, then, a theory of ground (equilibrium)
electronic states in which the electronegativity of chemistry plays in the
basic variational principle (4.1.6) just the role that the energy plays in the
basic variational principle (1.2.8) of wave-function theory. This result
demands attention to the density-functional theory as a description of
chemistry. In this description, the chemical potential is the key concept;
we shall find in the next chapter that the derivatives of the chemical
potential are of comparable importance.

4.3 Detailed consideration of the grand canonical ensemble near zero
temperature

In order to have the variational equation (4.1.20), we have seen in §4.1
that we should take the 6—0 limit of the grand canonical theory
described in §§3.6 and 4.1. We now carefully examine this limiting
process. Then we determine the ground-state energy for nonintegral N.
The argument derives from Gyftopoulos and Hatsopoulos (1965) and
Perdew, Parr, Levy, and Balduz (1982); see also Linderberg (1977).

To see how the analysis goes, it is most helpful first to consider a
particular model system, a species that can exist in only three states: the
neutral ground state with energy E, and number of electrons N,, a
positive-ion ground state with energy E,+ I and number of electrons
N;—1, and a negative-ion ground state with energy E,— A and number
of electrons N, + 1. All states are assumed nondegenerate. At inverse
temperature f and chemical potential u, the grand canonical partition
function will be

Z(B, n)= e—ﬁ(EowNo)[l 4 e B4 4 e—ﬂ(l+u)] 4.3.1)

Consequently we have, from standard formulas for ensemble averages,

_ 1f2InZ BlA+p) _ ,—BU+n)
N=2| 5| =Mt |15 — . (4.3.2)
BL ou lg 1+ eP@+E) L =BU+r)
Also ) o
= al yA Aeﬁ(A'*'i‘ —Je~ (I+u
E= s = 0o + - + (4.3.3)
ag 1, 1 + eP@+m) 4 o=BU+w)
and

S=k[In Z + BE — BNu]

BA+ D UL+ e )

=k {l“ (L+efAr) 4 g=hUT1) — [ 1+ ePATI Y (BT

(4.3.4)
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These formulas provide the various average properties for any f and p.
To obtain them for any B and N, one may eliminate y using (4.3.2).

Suppose first that N = Ny—the system has an integral number of
electrons. Then from (4.3.2) it immediately follows that ef“+# =
e P or I+ A+2u=0, or

I+ A
po=——>—[N =N (4.3.5)

This is just the Mulliken formula of (4.2.2), and it is valid for any
temperature.

When N #N,, (4.3.2) can be rewritten as a quadratic equation and
solved, as follows. Let

u=pot+Apy, N =N,+ AN,
y=e PR, y=eftn (4.3.6)
Then (4.3.2) becomes
_ y&*-1
y(x*+1)+x (4.3.7)
the solution of which is
AN % {(AN)* + 4y*[1 — (AN)*]}}*
_ANE(@NP - BN s

2y(1 - AN)

This gives Ay and hence u for any § and AN or N. For AN =0, for
example, we find x=+1=+1, Au=0, p= oy, recovering (4.3.5) for
any B. For AN #0, the zero-temperature limits are different for AN plus
and AN minus. Noting that limg ... y = 0 assuming convexity of E(N), we
find, in the zero-temperature limit:

4 2 12
AN + AN{I +g A;V)z [1—(AN) ]} AN
AN>0: x= (L - AN) (1= AN)
(4.3.9)
4 2 122
AN - AN{I +7 A1yv (- (AN)2]} S+ AN)
AN<O: x= 29(1L— AN) AN
(4.3.10)

Consequently, we have for very high § or very low 6,

I-A\ 1/ AN
1>AN>0: A +( ) —1( ) .
p=t(5) (o) @s
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u=—-A+ % In (1 fIZN) (4.3.12)
—1<AN<O: Au=—(1—;£)+%ln[—(l—+AL;—NZ] (4.3.13)
U= —I+}31n[—(1—1—§/—N2] (4.3.14)

From (4.3.5), (4.3.12) and (4.3.14), we therefore infer the zero-
temperature limits

'_I, N()'_1<N<N0
I+A
UHe=0= _T, N=N() (4315)
'_A, N()+1>N>N0

To obtain the ground-state energy, we insert (4.3.11) and (4.3.13) into
(4.3.3), and take the limit 8— . The result, writing N for N, is

EO(NO)_I(N'_N()), No—1<N<N,
E°(N) =4 E°(N), N=N, (4.3.16)
E°(N)) —A(N~N,), No+1>N>N,

For this three-state model, the energy at zero temperature is a continuous
series of straight-line segments, as shown in Fig. 4.1. The energy for a
nonintegral number of electrons is given by linear interpolation between
the values for integral numbers of electrons (Perdew, Parr, Levy, and
Balduz, 1982).

As can be readily verified by calculation, for typical atomic or
molecular values of I and A, it requires a quite high temperature to cause
much curvature to appear in E(N) curves. We will return to the
curvature at the end of this section. Equations (4.3.15) and (4.3.16),
although derived from a three-state model, remain true in general, as will
be established below. The essence of the zero-temperature grand-
canonical-ensemble theory is captured in (4.3.15) and (4.3.16).

In this three-state model system, all states have been assumed to be
nondegenerate. But there is little effect if degeneracy is present. If the
degeneracies of positive ion, neutral species, and negative ion are g, go,
and g_, (4.3.2) is replaced by

B(A+u) ~B(I+p)
—_8-¢ —8+€
N _gO + g_eﬁ(A+u) + g+e—ﬁ(1+u) (4.3 17)
Equation (4.3.5) is replaced by

I+A 1
o= ="+ Y lngf [large B, N = N (4.3.18)
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This displays a temperature dependence in i, but in the $— o limit this
disappears and (4.3.5) results. For N nonintegral, (4.3.12) and (4.3.14)
are similarly modified by terms vanishing as f— o [Perdew 1985], so that
(4.3.15) and (4.3.16) remain valid in the presence of degeneracies.

We now describe the zero-temperature limit of the full grand-
canonical-ensemble theory, into which enter ground and excited states of
all species, and ions of all possible positive and negative charges. The
only assumption is the convexity assumption of (4.1.15). For the general
case, the partition function becomes

Z= %} 2 gne ™ PENTHN (4.3.19)
]
where g,; are degeneracies, and in place of (4.3.2)
-1
N=- 2 2, gnNe BEN—HN) (4.3.20)
N ]

In the §—0 or f— = limit, only the ground states of the various species
survive. Calling the ground-state energy and degeneracy for N electrons
E% and g%, we get for very large B and integral N

E}_1—E3 1 g
o= — N-1 N+1+__lngg/—1
2 28 gin

provided only that the convexity condition of (4.1.5) is satisfied.
Similarly, if N=N;+ AN, where N, is some integer and AN is
positive, the result should be

[large B, N =Ny] (4.3.21)

to—o=EX,— E}s1) Ny+1>N>N, (4.3.22)
If AN is negative, on the other hand,
Ho—o=ERy— EX-1, No—1<N<N, (4.3.23)
Summarizing, we have
(-1, No—1<N<N,
I+A
Ho-0=\ —~5 N=N, (4.3.24)
—A, No+1>N<N,

in accordance with (4.3.15). E(N) as a function of N at 8 = is a series
of straight-line segments connecting integral-N values.

To prove the foregoing, we depart from the literature by formulating
the problem directly at zero temperature. Instead of using a Lagrange
multiplier u as in (4.1.4), we carry out the energy minimization with
proper normalization built in at the start. Thus, we write the ground-state
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energy for an arbitrary number of electrons N as

E°(N) = Min {2 p(M) - E"(M)} (4.3.25)
with constraints
% p(M)=1 (4.3.26)
> Mp(MY=N 4.3.27)
1=p(M)=0 forall M (4.3.28)

where p(M) and E°(M) are the probability and ground-state energy for
the system in same external potential v(r) with M electrons. M is an
integer and the sum is over all positive integers. The minimization in
(4.3.25) is equivalent to the one in (4.1.4), because we now use for the
evaluation of TrI'H the eigenstates of the Hamiltonian A in which I is
diagonal with eigenvalues p(M). The excited states all have zero
probabilities, since E°(M) is the minimum for the expectation value of A
for states with M electrons.

We now solve for p(M) and E°(N). This problem is a minimization of
a linear function of p(M) with linear constraints; it cannot be solved by
the usual Lagrange multiplier method. Instead, the minimum is reached at
the boundary of the domain of admissible p(M). Suppose N is between
the integers J — 1 and J. Then we can rewrite (4.3.26) and (4.3.27) as

pJ - +p(J)=1- }Lj’p(L) (4.3.29)
(-1)-pU-1)+J-p)=N->"L-p(L) (4.3.30)

which can be solved for p(J— 1) and p(J), ;
pU—-1=J —N——;'p(L) (I =L) (4.3.31)
p)=N-J+1- }L]’p(L) (L-T+1) (4.3.32)

where, for the primed summations,

Xi= 3 (4.3.33)

Inserting (4.3.31) and (4.3.32) into (4.3.25), we have
EN)=(N-J+1)-E°J)+(J - N)E’(J - 1)
+ Min {}L) p(D[-(L-J+1)E(J)—(J- L)E°(U—-1)+ E"(L)]}

(4.3.34)
in which p(L) needs only to satisfy (4.3.28).
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For each L, the value of p(L) that minimizes (4.3.34) depends on the
sign of the term in square brackets in (4.3.34), the quantity

g(Ly=—(L-J+1)E(J)~( - L)E°(J —1) + E°(L) (4.3.35)

Since the boundary values of p(L) are 0 and 1, to attain the minimum
of E°(N) it is necessary that

p(L)Y=0 if g(L)>0
p(L)y=1 if g(L)<O0 (4.3.36)
1=sp(L)y<0 if gL)=0
It turns out that for the atoms and molecules we always have
g(L)=0 (4.3.37)

which comes from the convexity of E°(M) in (4.1.15), or equivalently
[see Equation (B.1) in Appendix B],

@E°(M,) + BE°(M,) — E°(aM, + BM,) =0 (4.3.38)
for =0, =0, a+pf=1, and aM,+BM, also an integer. For

L>J-1, )
gy=(L-J+ D[L-E— §L+)1 = —szi 7(31— 1)—5(1)]

=0 (4.3.39)
using (4.3.38). For L <J — 1, one finds
gL)=0- L)[ f_(li 4 LJ__IZEO(J) ~E(J- 1)]
=0 (4.3.40)

using (4.3.38).
Applying (4.3.39) and (4.3.40), (4.3.36), and (4.3.34), we obtain

E°N)= (N =T+ 1)E°(J) + (J — N)E°(J — 1) (4.3.41)

in agreement with (4.3.16). If (4.3.38) is a strict inequality, that is, if
E°(M) is strictly convex, we further have, from (4.3.31) and (4.3.32),

p(J—1)=J—N,
pU)=N-J+1, (4.3.42)
p(L)=0,L+#J,J—1

If E°(M) is only convex, then the set of p(M) that minimizes (4.2.34) is
not unique. Equation (4.3.41) still holds, however, as does the chemical
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potential expression

u=§§=E°(J)~E°(J—1) fory >N>J—-1 (4.3.43)
In summary, at the limit of zero temperature the grand-canonical-
ensemble theory gives E°(N) as a continuous linear interpolation among
E°(M) values, where M is integral. This assumes E°(M) to be convex at
all positive integers, which is the case for atoms and molecules.
To end this section, we briefly consider another quantity of interest:
the curvature of E as a function of N at 0K,

3
E i
2n = (22—1\/2) = lim | qu (GE/oN)p (4.3.44)
60 B ( N / al“)ﬁ
This is found to be
0, N <N,
=) Bno] — =
21 = him [noe™] =, N=No (4.3.45)
0, N>N0
where
I-A
No= (4.3.46)
2 .
Alternatively, we could define
I-A 1/8°E
={—} 6(N— =—(—) 4.3.4
n=(57) s -Ny=3(55). (43.47)
which would accord with the identity
Notd s 2R OE JOE
— | dN = (——) - (-—) 4.3.48
for G =(),. - GR), G3®

since (8°E/8N?)¢-o is zero for the straight-line segments for N <N, and
N> N,. The quantity no= (I — A)/2 turns out to be very important; it is
the absolute hardness of a chemical species (Parr and Pearson 1983).
Hardness will be discussed at length in the next chapter.

4.4 The chemical potential for a pure state and in the canonical
ensemble

We now consider the concept of chemical potential in the canonical
ensemble and for a pure state, both cases in which the number of
electrons is integral.
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As was described in §3.5, in the canonical ensemble one has a system
of interest of N, particles and minimizes a functional A[p] over densities
integrating to N,. In the 8 =0 limit, which is our present concern, one
minimizes E[p] subject to proper normalization of p; that is,

E°(N) = Min £[o] (4.4.1)
where
Eclpl=Felpl + [ v()p(e) de (4.4.2)
with
Felp] = Min {tr [fx(+ V.0 (4.43)

These are the zero-temperature limits of (3.5.13)-(3.5.15). The varia-
tional principle of (4.4.1) follows from (2.3.28), the minimizing density
being the ground-state density if the ground state is nondegenerate, or an
arbitrary linear combination of the ground-state densities if it is degener-
ate. The universal functional F¢[p] was proposed by Valone (1980a) and
Lieb (1982) to extend the Levy constrained search to all mixed states in
the N-electron Hilbert space.

In the pure ground-state theory of §3.4, F[p] of (3.4.5) is the universal
functional instead of (4.4.3). The variational principle (3.4.8) is of the
same form as (4.4.1). In the following discussion, these two cases are
dealt with at the same time, E[p] standing for the energy functional for
both canonical ensemble and pure state.

How do we implement the variation (4.4.1) within all the densities
integrating to integral N? We cannot directly use the Lagrange multiplier
technique, because the constraint-free variation 8{E[p] — A[{ p dr — N]},
where A is the supposed Lagrange multiplier, would require E[p] to be
defined for nonintegral numbers of electron (see Appendix A), which is
not the case in either the canonical ensemble (4.4.2) or the pure state
(3.4.9). However, we can explicitly impose the normalization by writing

Ng(r)

p(r) =
| e ar

(4.4.4)

This allows g(r) to be any nonnegative function, while p(r) always still
integrates to N, in the same way that normalization of wave functions is
taken care of in (1.2.1) and (1.2.3). Thus, we have the ground-state
variational principle

SE[p] _ ( O ) 20()
AT )

dr' =0 (4.4.5)
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where we have used the chain rule, (A.24) of Appendix A. The subscript
N here indicates that the functional differentiation is performed with N
fixed. Using (4.4.4), we get

(jsp(rl)= N 6(1" _l.)____g(rﬁ,)_ » (446)
so that (4.4.5) gives
OE\ _[(0F gy .,

The right-hand side of (4.4.7) is a constant independent of r. This
constant cannot be determined by (4.4.7), because any value makes
(4.4.7) an identity. Therefore,

( 62?; ))N —c (4.4.8)

with C an arbitrary constant.

Contained in (4.4.8) is the equivalent of the Schrédinger equation for
the ground state. Comparing with (4.1.7), we see that chemical potential
u does not occur in (4.4.8) and its existence in the theory at this stage is
solely due to the grand-canonical ensemble extension of the ground-state
theory.

The chemical potential concept can also be identified in the canonical
ensemble theory, however. The simple way to do this is to follow the
procedure that is used for canonical ensemble theory in statistical
mechanics, the finite-difference method (see p. 41 of Ashcroft and
Mermin 1976). Thus, for the system of N electrons, we take [and note
that this accords with (4.3.15)]

E(N-1)-EWN

= ( _) 1 () = —I (slope when the system gives up an electron)
(4.49)
pt=E(N+1)—E(N)=—A (slope when the system adds an electron)
(4.4.10)

o_ _I+A N ,
u= -5 (slope when an electron is neither given up nor added)
(4.4.11)

Also, the curvature of E(N) becomes
n=3EWN+1)—EWN)—(E(N)—EN-1)]=3I-A4) 4.4.12)
Note the difference between this formula and (4.3.45).
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Another way to recover the chemical potential is to extend the
minimization (4.4.1) to all different integral N. In this case the Lagrange
multiplier u becomes fuzzy if one makes no further assumptions (Parr
and Bartolotti 1983). Consider at what density the quantity E{p] — uN[p]
will in fact be a minimum, if only trial densities normalized to integers
are used. If [ pdr=N,, the minimum value is E[po(Ny)] ~ uNo, Where
E[po(Ny)] is the ground-state energy for N, electrons. Similarly, if
{ pdr=N,+1, the minimum value will be E[po(No+ 1)] — u(No + 1)]; if
[ pdr=N,—1, it will be E[po(No—1)] —u(No—1). Of these three
numbers, the smaliest depends on the value of ¢ and on the values of the
three energies. The smallest will be the first, E[po(Ny)] — uNy, if p is in
the range

As—us<lI (4.4.13)

where I and A respectively are the ionization potential and electron
affinity of the species with N =A,. Note that (4.4.9) to (4.4.11) give u
values in this range. With any value of u satisfying (4.4.13), the minimum
of E[p]— uN[p] over all p integrating to different integers will give
E[po(No)] — uNo. Equation (4.4.13) also implies that E°(N) needs to be
convex [see (4.1.15)]. Trial p may in fact be limited to those integrating
to integers.

4.5 Discussion

Although the zero-temperature limit of the grand canonical ensemble
provides a natural definition for the ground state of nonintegral-N
systems, the continuous straight-line segments for E°(N) need not be
correct for a species imbedded in some environment, or for an atom or
functional group in a molecule. In most actual situations we can
reasonably imagine interpolating among values of ground-state energies
for integral numbers of electrons, thereby extending the minimum search
of (4.4.1) to arbitrary densities. Then we will be able to use Lagrange-
multiplier techniques,

6{E[p] —u f pdr} =0 (4.5.1)
or
OE
u =5p—E%l (4.5.2)

For example, a parabolic fit of the three points E°(N — 1), E°(N), and
E°(N —1) for integral N, gives u=—(I+A)/2, in agreement with
(4.4.11), and n = (I — A)/2 in agreement with (4.4.12).

In fact, (4.5.2) is more convenient to handle than (4.4.8), because
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(8E/8p(r))n is hard to evaluate. Thus, in many practical applications of
density functional theory, instead of (4.4.8), (4.5.2) is used, where some
interpolation or other is implicit in the treatment of E[p].

The difference between OE/Sp and (8E/Sp)y is itself worth some
elaboration (Parr and Bartolotti 1983). One has E = E[p, v]. Writing

p=No (4.5.3)
where o is a shape factor,

f () dr=1 (4.5.4)

one has E = E[N, o, v] as well. Therefore we may write

OE = f{ép( )] p(r) dr+f[5%]p ou(r) dr
f [ OF ] [0() 5N + N So(x)] dr + f [—55] @ de (4.5.5)

) su(®)J,
and also
oE ‘[ 8E OF
B-(25) one [[2L] soyaes [[2E] 56
6 N/, 50() In.s o(r) dr pe pév(r)dr (4.5.6)
Subtracting these equations we find, since 6N and dv(r) are independent,
oF [ OFE ]
Pt =|}— d 5.
(azv)a,v f 30, 70 4 (4.5.7)
and
OF OE
MLE] 2] Joano @
J s .~ oo o @39

Equation (4.5.7) will not here concern us further.
Does (4.5.8) mean that the term in curly brackets is identically zero?
No, because (4.5.4) implies that

f S(x) dr =0 (4.5.9)
Together, (4.5.8) and (4.5.9) imply that
0E OE
N[ ] - [ ] = constant 4.5.10
op(r)l, Léo(®)ln. ( )
or,
OE ] [ OE ]
— = + constant 4.5.11
[5p(r) no  LOp(r) ], ( )
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where the constant cannot be evaluated without more information. The
mathematical lemma used here is well known (Courant and Hilbert 1953,
p. 201). Note that (4.5.11) is compatible with (4.4.8) and (4.5.2).

In this chapter we have discussed the concept of chemical potential
from various angles: the zero-temperature limit of the grand-canonical-
ensemble theory, the finite difference in the pure-state theory, the
differential in the interpolation theory, and the fuzzy result from
consideration of pure states in the Fock space. Equations (4.4.9)-(4.4.12)
are clear-cut definitions for most practical purposes. The discontinuity of
chemical potential at integral numbers of electrons turns out to be of
major importance in calculations of band gaps of solids (Perdew and
Levy 1983, Sham and Schliiter 1985. Gunnarsson and Schénhammer
1986, Schonhammer and Gunnarsson 1987, Shen, Bylander, and Klein-
man 1988, Sham and Schliiter 1988).

Ensembles other than the ones we have considered are also of interest.
For example, see the Tachibana (1989) proposal to incorporate con-
straints for an apparatus, affording the possibility of turning an excited
state into a ground state and thereby making it accessible to ground-state
theory.




