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lable 3.25 SCF dipole moments (a.u.) for
the ten-electron series and the standard ’
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Basis sct NH, H,O FH
STO-3G 0.703 0.679 0.507
431G 0.905 1.026 0.897
6-31G* 0.768 0.876 0.780
6-31G** 0.744 0.860 0.776
Near-HF-limit 0.653° 0.785 0.764°
Experiment 0.579 0.728 0.716
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opposite to the first contribution. The cancellation, leading to a small posi-
tive (C~O™) dipole moment, is not reproduced with sufficient accuracy in

the SCF calculations. As we shall see in the next chapter, this disagreement

between theory and experiment disappears when proper account is taken of
correlation effects,

Table 3.25 contains the calculated dipole moments for NH,, H,O, and
FH using our standard basis sets. Only at the 6-31G* level and beyond is
the proper trend H,O > FH > NH; reproduced. At the Hartree-Fock
limit the calculated dipole moments are somewhat too large, but the trend
1s well reproduced. The 6-31G** basis set still appears to be inadequate for
accurate calculation of dipole moments, since the values obtained with it
are still rather distant from Hartree-Fock-limit values.

3.8 UNRESTRICTED OPEN-SHELL HARTREE-FOCK:
THE POPLE-NESBET EQUATIONS

At the beginning of this chapter we derived and discussed formal properties
of the Hartree-Fock equations independent of any particular form for the
spin orbitals. We then introduced a set of restricted spin orbitals and have
since been concerned solely with restricted closed-shell calculations of the
type

Wrar) = Wb, D (3.306)

Obviously, not all molecules, nor all states of closed-shell molecules, can be
described by pairs of electrons in closed-shell orbitals, and we now need to



206 MODERN QUANTUM CHEMISTRY

generalize the previous closed-shell formalism to accommodate situations
in which a molecule has one or more open-shell (unpaired) electrons. That
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I‘PUHF> = |W§‘W ) (3.307)

In the previous chapter we gave a preliminary description of open-shell
determinants (Section 2.5); we now obtain the SCF equations for unrestricted
calculations.

In dealing with open-shell problems, there are two common approaches:
the restricted open-shell, and the unrestrictied open-shell Hartree-Fock
procedures. In the restricted open-shell formalism, all electrons, except
those that are explicitly required to occupy open-shell orbitals, occupy
closed-shell orbitals. The advantage of this procedure is that the wave func-
tions one obtains are eigenfunctions of the spin operator 2. The disadvan-
tage is that the constraint of occupying orbitals in pairs raises the vanational
energy. In addition, the spatial equations defining the closed- and open-shell
orbitals of restricted open-shell Hartree-Fock theory are somewhat more
involved or at least less straightforward than the spatial equations of un-
restricted Hartree-Fock theory. For treating open-shells our emphasis is on
unrestricted calculations—mainly for reasons of simplicity and generality.

As we have discussed previously, a restricted Hartree-Fock description
is inappropriate at long bond lengths for a molecule like H,, which disso-
ciates to open-shell species. This problem can be solved to a certain extent
by using an unrestricted wave function at long bond lengths. In addition to
describing unrestricted wave functions for “true” open shells (doublets,
triplets, etc.), we will spend some time in this section analyzing the “singlet”
dissociation problem with our minimal basis H, model. An unrestricted

wave function will allow a closed-shell molecule like H, to dissociate to

open-shell atoms.

In this section, then, we first introduce a set of unrestricted spin orbitals
to derive the spatial eigenvalue equations of unrestricted Hartree-Fock
theory. We then introduce a basis set and generate the unrestricted Pople-
Nesbet matrix equations, which are analogous to the restricted Roothaan
equations. We then perform some sample calculations to illustrate solutions
to the unrestricted equations. Finally, we discuss the dissociation problem
and its unrestricted solution.

3.8.1 Open-Shell Hartree-Fock: Unrestricted Spin Orbitals
The general Hartree-Fock eigenvalue equation, in terms of spin orbitals, is
SWxi(1) = ex(1) (3.308)

What we want to do now is to introduce the specific unrestricted form for the
spin orbitals {y;} and derive, from the above general Hartree-Fock equation,
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the spatial equations which determine the unrestricted spatial orbitals. The
nrocedure that we use here is guite analogous to that of Subsection 3, 41

| atabd it Ll P T Rl Lt L0 RieAlt QALRIAEBRSRRs LR LRGSR RARRRORAAANSS

where we derived the spatial equations determining restricted spatial orbltals
We will not repeat all details of the derivation.

Analogous to Eq. (3.110) for restricted spin orbitals, an unrestricted set
of spin orbitals has the following form

o [H0@) 4309
“0 {wf(r)ﬁ(w) 338

That is, electrons of o spin are described by a set of spatial orbitals {%] j =
1,2,..., K}, and electrons of f§ spin are described by a different set of spatial
orbitals {y4|j = 1,2,..., K}. In our previous restricted case ¢ = y§ = y,.
We are now allowing electrons of o and # spin to be described by different
spatial functions.

To derive the spatial equations defining {3} and {y/§}, we need to insert
Eq. (3.309) for the spin orbitals { x:} into the general Hartree-Fock equation
(3.308) and integrate out the spin variable w. For simplicity, we will con-
centrate on the equation defining ¢/ and use the symmetry between o and f8
spins to write down the corresponding equations defining y/4. Substituting

En {2 an\ e E En 2 ‘.'lﬂQ\ Innn‘c\ [ oY
Lz\i. (J-JU?} 1LY l._.'\i. lJ.JUU, IvaAuo v

SO, )alw,) = edfi(r,)o(w,) (3.310)

Now, g; is the energy of the spin orbital y; = Y/je. Since the spin orbitals for
electrons of o and ﬁ spin have different Spatlal parts their energies will also
be different. In the above case ¢; = ¢}. There will be a corresponding set of

orbital energies {ef|j =1, 2, ..., K} for electrons of § spin. Thus

S )o(ewy) = e Jow,) (3.311)

If we now multiply this equation by «*(w,) and integrate over spin we get
FAOW31) = UD) (3.312)
PR = ey ) (3313)
as the spatial equations defining the spatial orbitals i and :\,,.'ji’= The spatial

Fock operators f%(1) and f#(1) are defined by

[y = fdwl o*(ewy) f(ry, )a(wy) (3.314)
£o) = (doy pHofE, 0)Be) (3315)

We could use the spin orbital definition (3.115) of f(r,, ,) to perform
these integrations and work out explicit formulas for f* and f”. Alternatively,
we can just write down expressions for f* and f* by considering the possible
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interactions defined by any unrestricted determinant,

bt

3 vo

The operator f%(1) is the kinetic energy, nuclear attraction, and effective
potential of an electron of « spin. The effective interactions of an electron of
o« spin include a coulomb and exchange interaction with all other electrons

of o spin plus only a coulomb interaction with electrons of £ spin. Thus

Ne NF
A1) = h(1) + 3, [JA1) ~ KxD)] + 3, JA1) (3.316)

where the two sums in this equation are over the N° orbitals ¥/ occupied by
electrons of « spin and the N* orbitals ¥ occupied by electrons of S spin.
The kinetic energy and nuclear attraction are independent of spin so h(1)
is identical to the corresponding operator of the restricted case. The electrons
of o spin see a coulomb potential J% and an exchange potential — K7 coming
from each of the N® electrons of & spin occupying the orbitals i3, plus a cou-
lomb potential J coming from each of the N¥ = N — N* electrons of §§
spin occupying the orbitals i/2. The sum over the N* orbitals 2 in the above
equation formally includes the interaction of an a electron with itself. How-

ever, since
[Ja) — Kx()ya)) =0 (3.317)

this self-interaction is eliminated. The corresponding Fock operator for
electrons of §§ spin is

NE N=
£ =h() + Y [JE1) — KED)] + Y J90) (3.318)

The unrestricted coulomb and exchange operators are defined in analogy
to our previous definitions (3.124) and (3.125) of the restricted coulomb and
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cxchange operators. That is,

I = [ de, YT @rivE2) (3.319)

Kswi) = | [ e, wz*(z)rr;w?m] n

ol (e, vt i Jw (1) (3320)

The definitions of J& and K? are strictly analogous to the above.

From the definitions (3.316) and (3.318) of the two Fock operators f“
and f# we can see that the two integro-differential eigenvalue equations
(3.312) and (3.313) are coupled and cannot be solved independently. That
is, f* depends on the occupied f orbitals, Y8, through J&, and f* depends on
the occupied o orbitals, %, through J%. The two equations must thus be
solved by a simultaneous iterative process.

Exercise 3.33 Rather than use the simple technique of writing down
f%(1) by inspection of the possible interactions, as we have done above, use
expression (3 314) for f “(l) and explicitly integrate over Spin and carry
uuuugu l.l]C d,lgUUld as was UUllU l[l DUUbCL«LIUll .) "I' 1 10T in€ lUblll (=18} LIGSEd
shell case, to derive

Net NB
FA) =h)y+ 3 [Ja) — KiW] + Y. JE)

Now that we have derived the unrestricted Hartree-Fock equations,
we can write down expressions for the unrestricted orbital energies, total
unrestricted energy, etc. First, we need to define a few terms. The kinetic
energy and nuclear attraction of an electron in one of the unrestricted orbitals
¢ or Y¥ is the expectation value

W = @ity or ki = WAk (3.321)
The Coulomb interaction of an electron in /¢ with one in ¢/ is
JH = I = Wil = Wi = Wi YD (3.322)

The corresponding coulomb interactions between electrons of the same
spin are

Jif = (i = Wil = Wit v (3.323)

and

JIP = WA E) = WIS = Wil [vih) (3.324)
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The exchange interactions between electrons of parallel spin are

Kif = WiKiD = WHKHW = Wil (3:325)
and

Kif = WEKIWE = WIKEWD = wivs|vivh) (3:326)
Tl_lere is, of course, no exchange inieraction between electrons of opposite
spin.

The total unrestricted electronic energy can now be written down just
by considering all the contributing energy terms,

No NB . Na N& . NB NB Ne NB
Eo=) M.+ Hats ZZ(J Kap) + 5 ZZ(J ff)+Z§JZ‘
(3.327)

The summations with upper limit N* are summations over the occupied
orbitals /% or /¢. A similar convention holds for orbitals occupied by electron
of f spin. The factor of 4 in the third and fourth terms eliminates the double
counting in the free summation. The self-interaction disappears since

Jox — K:f,‘ JBE — KBE = () as Egs. (3.323) to (3.326) verify.

Exercise 3.34 The unrestricted doublet ground state of the Li atom is

¥o> = |w1(l)$”(2)w“(3)) Show that the energy of this state is E,=
WK, +h,+0m,+J%— K%+ J% +J4

Exercise 3.35 The unrestricted orbital energies are & = (y?|f*¢?) and
ef = (¥ fPy¥F). Show that these are given by

No

NB
=h;+ > Je—KiH+ > JF

N8 Na
ef=hi+) JEF—KB+ ) I

Derive an expression for E, in terms of the orbital energies and the coulomb
and e: change energies.

3.8.2 Introduction of a Basis: The Pople-Nesbet Equations

To solve the unrestricted Hartree-Fock equations (3.312) and (3.313), we
need to introduce a basis set and convert these integro differential equations
to matrix equations,!? just as we did when deriving Roothaan’s equations.
We thus introduce our set of basis functions {¢,|u=1,2,..., K} and
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expand the unrestricted molecular orbitals in this basis, »

K

=Y Cud  i=12....K (3.328)
n=1
K
Y Che, i=12....K (3.329)
=1

T'he two eigenvalue equations (3.312) and (3.313) guarantee that the sets of
cigenfunctions {{f} and {{f} individually forrn orthonorrnal sets. There is
no reason, however, that a member of the set il]l, j need be orthogonal to a
member of the set {{#}. Even though the two sets of spatial orbitals overlap
with each other, the set of 2K spin orbitals {y;} will form an orthonormal set,
either from spatial orthogonality (cec and ff case) or spin orthogonality
(oeff case).

Substituting the expansion (3.328) for the orbitals ¢/ into the o Hartree-
Fock equation (3.312) gives

Y. CL M(1) = & 5. CLpy(1) (3.330)

(f we multiply this equation by ¢}¥(1) and integrate over the spatial co-
ordinates of electron-one, we get

Z FoC% =gt Z S.C%  j=12...,K (3.331)

where S is the overlap matrix (cf. Eq. (3.136)) and F* is the matrix repre-
sentation of f* in the basis {¢,},

Fa, = [dr, gpr o) (3.332)

Identical results can be obtained for £ orbitals. The algebraic equations in
(3.331) and the corresponding equations for § orbitals can be combined into
the two matrix equations,

F*C* = SC%” (3.333)
FACP = SCPe (3.334)

These tweremlatmn are the unrestricted oenemlﬂntmnq of the restricted

Roothaan equations (c.f. Eq. (3.139)) and were first given by Pople and N

bet. The matrices &* and & are diagonal matrices of orbital energies (c.f. Eq.
(3.141)). The K x K square matrices C* and C* have as columns the expansion
coefficients for y¢ and y# (c.f. Eq. (3.140)). These equations can be solved in
a manner similar to the way Roothaan’s equations are solved, except that,
since F* and F# depend on both C* and C¥, the two matrix eigenvalue prob-
lems must be solved simultaneously. We will return to the solution of these
equations after we have described unrestricted density matrices and the
explicit form of F, and F&,.
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3.8.3 Unrestricted Density Matrices

We continue here with the generalization of our previous results for restricted
closed-shell wave functions. If an electron is described by the molecular
orbital /%), then the probability of finding that electron in a volume element
dr at r is [y/5(r)|? dr. The probability distribution function (charge density)
is y3(m)|>. If we have N* electrons of o spin, then the total charge density
contributed by these electrons is

Ne
P =) lim)|? (3.335)

The corresponding charge density contributed by electrons of f§ spin is
N8
PP = 3 Whm)? (3.336)

and the total charge density for electrons of either spin is the sum of these
pT(r) = pr) + pF(r) (3.337)

Integrating this equation leads, as expected, to
J‘dr pIr)= N=N*+ N* (3.338)

In an unrestricted wave function, electrons of o and f spin have different
spatial distributions (p* # p*), and it is convenient to define a spin density

p5(r) by
p%(r) = p%(r) — pf(r) (3.339)

From the above definition of the qnm density, it is clear that in regions of

space where there is a higher probablhty of ﬁndlng an electron of a spin than
there is of finding an electron of f spin the spin density is positive. Alter-
natively, the spin density is negative in regions of space where electrons of f
spin are most prevalent. The individual densities p* and p are, of course
positive everywhere. The spin density is a convenient way of describing the

distribution of spins in an open-shell system.

Exercise 3.36 Use definitions (3.335) and (3.336) and Eq. (2.254) to show
that the integral over all space of the spin density is 2{% ).

By substituting the basis set expansions (3.328) and (3.329) of the a and
f molecular orbitals into the expressions (3.335) and (3.336) for the « and
charge densities, one can generate matrix representations (density matrices)
of the o and f charge densities,

No
p) =3, Wam|* = 3. 3, PLo,D)e}r) (3.340)
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N
PPy = [Whm|* = Z > Phpur)X(r) (3.341)

where the density matrix P* for « electrons and the densit

A AL Rel RiFARY Lisfdiiin = [4F LW

clectrons are defined by

e
’3 ‘
£
-
o
e
.,
™

Ne
=2 Gl G ' (3.342)
P, = Z CE,(CE) (3343)

In addition to these two density matrices, one can, of course, define, in
analogy to our previous definitions, a total density matrix and a spin density
matrix. That is,

PT =P + P# (3.344)
PS5 = p° — P# (3.345)

Exercise 3.37 Carry through the missing steps that led to Egs. (3.340)
to (3.343).

Exercise 3.38 Show that expectation values of spin-independent sums
N

of one-electron operators » k(i) are given by
i=1

0y =Y ¥ PLolHw)

for any unrestricted single determinant.

--..—---.- Y QWS a L

is a sum of one-electron operators,
N
p°=2 ) o(r;— Rs.(i)
i=1

Use the rules for evaluating matrix elements, given in Chapter 2, to show
that the expectation value of 5° for any unrestricted single determinant is
(P°> = p°(R) = u(P°A)
where
Ay = $i(R)O(R)

This matrix element is important in the theory of the Fermi contact contri-
bution to ESR and NMR coupling constants.
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Having defined the unrestricted density matrices P% P%, PT and P° we
will now use these definitions to give explicit form to the unrestricted Fock
matrices F* and F~.

3.8.4 Expression for the Fock Matrices

To obtain expressions for the elements of the matrices F* and F#, we simply
take matrix elements in the basis {¢,} of the two Fock operators f* (Eq.
(3.316)) and f* (Eq. (3.318)), and use expressions (3.322) to (3.326) for matrix
elements of the coulomb and exchange operators. That is,

Fi, = [dr, g0,
No NB
= H® + X [@u: Vi) — (@21 vep)] + > (dud Uiyl (3.346)

Fi, = {dr, (hfﬁmau)
= H" + Z [(¢. 0. |VEWE) — (D45 |Whd,)] + Z (Pud. |3 (3.347)

To continue, we substitute the basis set expansions of /2 and ¥/ to get
Ne NB
Fo=H+Y Y Y ColCo)*[(wv|oh)—(ud]|on)]+ 3. 3, 3. ChlCod *(pv|oh)
A o a A o a
= H+3' Y Pi[(pv|od)—(ud|ov)]+Y 3. Pi(uv|c?)
A O VI

= H;3f°+z Z P (uv]|a2)— P,(pd]ov) (3.348)

Nﬂ
SHT Y z CalCo) [y [0A)— (2| o]+ 2. 2. D Cial Coa) (v |0 2)
A a a
=H + 3 ¥ Phlw|oh)—(ud|on]+2 X Piluv] o)
A o o

—Hg + 3 3 P (o) — Ph(uilov) (3.349)

If one compares these expressions with the corresponding restricted closed-
shell expression (3.154), one sees that the coulomb term is identical and
depends on the total density matrix. The difference is only that here one has
separate representations of the a and B density matrices rather than, as in
the closed-shell case,

P2, =P8 =3 PL (3.350)
The coupling of the two sets of equations is made explicit in the above

expressions, i.e., F* depends on P# (through the total density matrix P7) and
F? similarly depends on P~
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3.8.5 Solution of the Unrestricted SCF Equations

lhe procedure for solving the unrestricted SCF equations is essentially
identical to that previously described for solving the Roothaan equations.
Aninitial guess is required for the two density matrices P~ and P# and hence
PT. An obvious choice is to set these matrices to zero and use H*™™ as an
initial guess to both F*and F*. If this procedure is followed, the first iteration
will produce identical orbitals for o and g spin, i.e., a restricted solution. If;
however, N* = N¥, then all subsequent iterations will have P* # P# and an
unrestricted solution will result.

Given approximations to P* and P#, at each step of the iteration, we can
form F* and F”, solve the two generalized matrix eigenvalue problems

F*C* = SC%* (3.351)
FFCP = SCPef (3.352)

for C* and C*, and then form new approximations to P* and P”. Because of
the coupling of the two equations, one cannot obtain a self-consistent solu-
tion to the x equations without at the same time obtaining a self-consistent
solution to the B equations, although at any one iteration step the two
malrix eigenvalue problems (3.351) and (3.352) can be solved independently;
the coupling is in the formation of the Fock matrices. Solving the matrix
eigenvalue problem will involve knowing a transformation matrix X to an
orthonormal basis set, forming F* = X'F°X, diagonalizing F* to get C*,
and then forming C* = XC¥, elc., just as in the restricted closed-shell case.

Exercise 3.40 Substitute the basis set expansion of the unrestricted
molecular orbitals into Eq. (3.327) for the electronic energy E, to show that

1 core 3 " 4
EO:EZZ[P\TAHM +Pquuv+P€uF£v
u v

Before going on to describe sample unrestricted calculations, an impor-
tant point should be noted about solutions to the Pople-Nesbet equations
for the special case N* = N®, i.e., for the case where a molecule would nor-
mally be described by a restricted closed-shell wave function. For this case,
there exists the possibility of two independent solutions to the Pople-Nesbet
equations, The first solution is a restricted solution. If P* = P# = 1P, then
F*=F? =F and the Pople-Nesbet equations degenerate to the Roothaan
equations. When N® = N®, a restricted solution to the Roothaan equations is
a solution to the unrestricted Pople-Nesbert equations. This restricted solution
always exists and necessarily results if an initial guess P* = P? is used. For
N* = N?, however, in addition to the restricted solution there may also exist
a second unrestricted solution of lower energy. The restricted solution con-
strains the density of a electrons to equal the density of § electrons, but under



certain conditions (which we shall consider in the last subsection of this
chapter) relaxing this constraint will result in an unrestricted solution of
lower energy for which P* is not equal to P?. When N* = N#_ under certain
conditions there exists a second solution, the unrestricted solution to the Pople-
Nesbet equations. In seeking this second solution, it is imperative that an
initial guess P* # P? be used or the equations will necessarily vield the
restricted solution. Even if an unrestricted initial guess is used, there is still
the possibility that iteration will lead to the restricted solution. When two
solutions exist, the initial guess will strongly determine to which solution
the iterations lead. '

One normally uses unrestricted wave functions to describe open-shell
states of molecules for which N* # N#, and the above considerations are
not of concern. When, however, one uses unrestricted wave functions as a
solution to the dissociation problem, as we shall subsequently do, the
possibility of two solutions is of supreme importance.

3.8.6 lilustrative Unrestricted Calculations

An interesting example of the use of unrestricted wave functions occurs for
the methyl radical CH;. This molecule has D, symmetry, i.e., it is planar
with bond angiles of 120°. The CH internuclear distance is taken to be
2.039 a.u. The simplest description of the electronic structure of this radical
is a restricted Hartree-Fock description, shown in Fig. 3.13. The unpaired

Figure 3.13 Restricted Hartree-Fock description of the planar
methyl radical.
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clectron is in an open-shell = orbital, which in a minimal basis description
would be a pure 2p orbital on carbon. The remaining electrons are paired in
o orbitals. In this restricted Hartree-Fock description, the spin density p'(r)
1s everywhere positive, except in the plane of the molecule where it is zero
because of the node in the n orbital. Because all ¢ electrons ate paired, the
spin density is just

pSE) = )2 . (3.353)

where i/, is the = molecular orbital containing the unpaired electron.

The above description, while simple, is not in agreement with experi-
mental results. In an electron spin resonance (ESR) experifnent on the methyl
radical, measurements were made of a" and 4, the coupling constants for
the hydrogen and carbon nuclei. These ESR coupling constants are a direct
measure of the spin densities at the position of the respective nuciei,

a(Gauss) = 1592p5(Ry) (3.354)
&S(Gauss) = 400.3,%R ) (3.355)

The experimental measurements of a" and ¢ give not only the magnitude
but also the sign of the spin density. It is found that the spin density at the
H nucleus is negative, and the spin density at the C nucleus is positive.
Unfortunately, the restricted Hartree-Fock description predicts the coupling
constants a” and 4 to be both zero. If the molecule were vibrating so that
part of the time the molecule had a bent C;, geomelry, then the restricted
description would allow nonzero spin densities at the nuclei. But these spin
densities and the associated coupling constants would always be positive.
Thus the negative spin density at the positions of the hydrogen nuclei cannot
be explained by a restricted Hartree-Fock description.

The simplest way of obtaining the correct qualitative result is to use an
unrestricted Hartree-Fock description. The electrons of Fig. 3.13 that are
paired in a ¢ orbital have different interactions with the unpaired electron,
Le., the electrons of « spin have a coulomb and exchange interaction with
the unpaired electron while the electrons of § spin have only a coulomb
interaction. There is thus good reason why the o and B electrons of the
sigma system should have different energies and occupy different spatiul
orbitals. If, indeed, one does relax the constraint of paired electrons, by using
the Pople-Nesbet equations, the unrestricted solution shown in Fig. 3.14 s
found. This unrestricted wave function does not have the ¢ electrons putred
and as such there will be net nonzero spin density in the sigma system,
particular, at the positions of the carbon and hydrogen nuclei. Unrestrict «l
calculations (Table 3.26), show that the spin density is positive at the carbot
nucleus and negative at the hydrogen nuclei, as also shown in the figutt,
This result is commonly explained by the use of two rules: an “intruatomi
Hund’s rule”, which postulates that electrons tend to have parallel spis o
the same atom, and a rule which states that the spins of electrons in vrbitul
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Figure 3.14 Unrestricted Hartree-Fock
description of the planar methyl radical.

ESEs

Table 3.26 Unrestricted SCF spin densities and hyperfine
coupling constants for the methyl radical using the standard
basis sets. A value of (%2) = 0.75 corresponds to a pure
doublet

Spin density Coupling constant
(a-u.) (Gauss)

Basis set C H aC atl (F?
STO-3G +0.2480 —0.0340 +99.3 —54.2 0.7652
431G +0.2343 —0.0339 +938 —-540 0.7622
6-31G* +0.1989 —0.0303 +79.6 —483 0.7618
6-31G** +0.1960 —0.0296 +78.5 —47.1 0.7614
Experiment +38.3 —23.0 0.75

hemical bond tend to be antiparallel. Negative spin

C
fthe hvdrnopn nuclei results from anplication of these

b e = ud o K B R LT .l-I-UAAj “H prRA WL i A AL e F

denqﬂv in the vicin t

that overlap to form a
yo

two rules.

Table 3.26 shows the results of ab initio calculations of the CH, hyperfine
coupling constants. The correct qualitative results are obtained—a positive
spin density at the carbon nucleus and a negative spin density at the hydrogen
nuclei. The magnitudes of the spin densities are too large, however. They
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are in error by about a factor of 2 for the 6-31G™** basis set. Without per-
lorming more extensive calculations, it is difficult to know whether the source
of the error is in the basis sets or in the neglect of correlation. The standard
basis sets we are using were derived primarily for the description of valence
properties, and they may not be adequate near a nucleus. In particular,
Gaussian functions are known to be poor at their origin. Also, the basis
sets that we are using contain only a single function for the mner-shell of
carbon.

The table also contains expectation values of #2. One of the deficiencies
of an unrestricted calculation is that it does not produce a pure spin state.
The ground state of the methyl radical is a doublet with (&%) = S(S + 1) =3.
The unrestricted calculations produce a doublet wave function, which is
contaminated with small amounts of a quartet, sextet, etc, as discussed
in Section 2.5. The expectation values of %2 are close to the correct value of
7. showing that these contaminants are not large.

Exercise 3.41 Assume the unrestricted Hartree-Fock (UHF) calcula-
tions of Table 3.26 contain only the leading quartet contaminant. That is,

\I;UHF - 612‘}’ + 624‘}’

If the percent contamination is defined as 100c3/(c? + ¢3), calculate the per-
cent contamination of each of the four calculations from the quoted value
of (&?>.

We have previously used Koopmans’ theorem to calculate the first two
ionization potentials of N,. As we saw at that time, calculations at the
Hartree-Fock limit, or with our best (6-31G*) basis set, incorrectly predict
the 2I1, state of N to be lower in energy than 2X, state of N3. That is,
the highest occupied orbital of N, is calculated to be the 17, orbital rather
than the 3¢, orbital. There are two reasons why Koopmans’ theorem might
make the wrong prediction: neglect of correlation or neglect of relaxation.
We can test the second alternative by explicitly performing Hartree-Fock
calculations on the ?T1, and X state of N3 . Koopmans’ theorem calculations
assume the orbitals of these two states to be identical to those of ground
state N,. By performing separate unrestricted calculations on these two
doublet states of N3, we will be allowing the orbitals to relax to their optimum
form. The ionization potentials can then be obtained by subtracting the total
restricted energy of the N, ground state from the total unrestricted encrgy
of each of the N3 ions.

Table 3.27 shows the results of 6-31G* calculations on the 2 state of
N, and the 2%, and I1,, states of N;. To compare with experimental vertical
ionization potentials, all the calculations were performed at the equilibrium
geometry (R = 2.074a.u.) of groundstate N,. These calculationsstill predict
that the 71, state has a lower energy than the 22, state in disagreement with
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Table 3.27 SCF calculations on the ground
state of N, (restricted) and two states of N;
(unrestricted) with a 6-31G* basis set. Vertical
(R, = 2074 a.u.) ionization potentials are
shown, and experimental values are in
parenthesis

Total Energy Ionization Potential

State (a.u.) (a.u.)
]
Nz(‘Zg) —108.94235
N3 (3I1) — 108.37855 0.564 (0.624)
N;’(ZEQ) — 108.36597 0.576 (0.573)

experiment. This is therefore an indication that the qualitative disagreement
of experiment with Koopmans’ theorem ionization potentials for N, is a
result of the lack of inclusion of correlation effects. Later, inclusion of
correlation effects will verify this.

Our final example of ab initio unrestricted calculations is O,. This

3

| : : . : -
nolecule has unpaired spins and is paramagnetic. The first brilliant success

of molecular orbital theory was the explanation of why O,, with an even
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number of electrons, does not have all its electrons paired. The molecular
orbitals of homonuclear diatomics are ordered 14, 10, 20,, 20,, (30,, 11,)
In,, 306,. The last two electrons of O, go into the doubly degenerate anti-
bonding 1n, orbital. By Hund’s rule, these two electrons go into separate
I, orbitals with their spins parallel so as to enjoy the negative exchange
interaction. This, therefore, leads to a final *X; state. The occupied orbitals
of an unrestricted 6-31G* calculation on O, for a bond length of 2.281 a.u.,
are shown in Fig. 3.15. The “open-shell” alpha electrons in the 17, orbital
“push” down (stabilize) the o orbitals relative to the S orbitals because of
exchange interactions that are present only between electrons of the same
spin. In a restricted description, all but the 17, orbitals would be constrained
to be paired. Note how the order of the 1n, and 30, orbitals are reversed
Ior electrons ol o and p spin.

To complete our discussion of unrestricted Hartree-Fock theory, we will
use our minimal basis H, model to investigate the description of bond
dissociation by unrestricted wave functions.

3.8.7 The Dissociation Problem and Its Unrestricted Solution

—

The unrestricted wave function is norm ally used to describe open- shell

= 2% “_- a2 22372 w352 A%S

states—doublets, triplets, etc., as in the examples of the last subsection. Under
certain circumstances, however, it may be appropriate to use an unrestricted
wave function to describe states that are normally thought of as closed-shell
singlets. For the ground state of a molecule like H,, the restricted formulation,
with electrons paired, is the usual description. As we shall shortly see, it is
also the only appropriate Hartree-Fock description under certain conditions.
At very large bond lengths, however, one is really trying to describe two
individual hydrogen atoms. A proper description will have one electron on
one H atom and the other electron on the other H atom, i.e., the two electrons
will have quite different spatial distributions. They should not have identical
spatial distributions as is implied by a restricted wave function, which places
both electrons in the same spatial orbital. It would thus appear that at
equilibrium distances we want a restricted wave function, but at large bond
lengths we want an unrestricted wave function. In a sense, we will be able

o e dicniona P - tha sveawrimas
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there may exist two solutions to the unrestricted equations of Pople and
Nesbet when N* = N*, The restricted solution of Roothaan’s equations is
necessarily a solution to the Pople-Nesbet equations. It only remains to
discover whether there is a second truly unrestricted solution that is lower
in energy than the restricted solution. We shall find that for normal geom-
etries there is not always an unrestricted solution. If, however, we stretch
a bond which cleaves homolytically, like the bond in H, (H, - H + H)
but unlike the bond in HeH* (HeH* — He + H*), then an unrestricted
solution will always exist at large bond lengths. The unrestricted solution
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accomodates the unpairing of electrons inherent in the breaking of the bond.
To see this explicitly, we will investigate wave functions for our minimal basis
model of H,.

We could numerically solve the Pople-Nesbet equations for minimal
basis STO-3G H,, just as we have solved them for CH,, N5, and O,. An
appropriate unrestricted initial guess would be required if the iterations were
to lead to an unrestricted solution rather than to the restricted solution. The
transition from a restricted to an unrestricted wave function will be more
transparent, however, if, rather than obtain a numerical solution to the
Pople-Nesbet matrix equations, we formulate the problem in an analytical
fashion.

The restricted molecular orbitals of minimal basis H, are symmetry
determined and given by

Y, = [2(1 + SIZ)]_l 2(¢1 + ¢b3) (3.356)
vy =200 — S,2)]" ¢, — b2) (3.357)

Since the minimal basis model has only two basis functions with coefficients
that can be varied and since molecular orbitals are constrained to be nor-
malized, the minimal basis model has, in the general case, only one degree
of freedom. An unrestricted solution, unlike the restricted solution, is not
symmetry determined and a convenient way of incorporating this one degree
of freedom into unrestricted calculations is to write the unrestricted occupied
molecular orbitals /% and £ as linear combinations of the restricted sym-
metry determined orbitals ¢/, and ¢, as follows:

1 =cosOf, + sin0y, (3.358)

Y4 = cosOy, — sinOyr, (

Pay

39)

T8
L)

The single degree of freedom here is in the angle 0. It is sufficient to consider
values of 0 between 0° and 45°. The value 0 = 0 corresponds to the re-
stricted solution y§ = £ =, and nonzero values of 0 correspond to
unrestricted solutions /% # /4. The unrestricted virtual orbitals are given by

% = —sinly, + cosOy, (3.360)
Yh =sinOy, + cosOy, (3.361)

Exercise 3.42 Show that the set of & orbitals {y/f, w5} and the set of
f orbitals {4, w4} form separate orthonormal sets.

If we substitute the basis set expansions (3.356) and (3.357) into the
previous four equations, we will obtain basis set expansions for the un-
restricted molecular orbitals. The occupied molecular orbitals, which are the
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only ones we need consider from now on, are given by
Wi =c1¢, + 20, (3.362)
Vi =cady + 1y (3.363)

where
¢y =[2(1 + Siz)]_”2 cosf + [2(1 - Slz)]_”" sin 0 (3.364)
Cy = [2(1 + Slz)]—llz cosl0 — [2(1 — Slz)]_llz sin @ (3.365]

By allowing ¢, to mix with ¢/, in the definition of the unrestricted
occupied orbitals (Egs. (3.358) and (3.359)), we allow the weights of ¢, and
¢, in the basis set expansions of y§ and ¥4 to vary as shown by Egs. (3.362)
and (3.363). If 6 = 0O, the wave function is just the restricted wave function
with ¢; = ¢, = [2(1 + S;,)]~ /2. As 0 increases from zero, ¢, gets larger and
¢, gets smaller or, equivalently, y§ acquires a larger admixture of ¢; and
4 acquires a larger admixture of ¢,. If S;, =0 as is appropriate for large
internuclear distances, then in the limit of @ = 45° wehavec; = 1, ¢, = 0,and

vi=¢ o _
w; _ ¢l} 0=45, 8§;,=0 (3.366)

This is the result we desire for two separate H atoms—an electron with o
spin in ¢, and an electron with f spin in ¢,.

We thus characterize molecular orbitals for minimal basis H, by the
single parameter 0. At one extreme, 0 = O corresponds to the restricted solu-
tion where the occupied molecular orbital is an equal mixture of ¢, and ¢,.
At the other exireme, 6 = 45° corresponds to an unrestricted solution for
isolated hydrogen atoms. Intermediate value of 6 correspond to unrestricted
solutions where y$ is mainly ¢, and ¢ is mainly ¢,. Figure 3.16 gives a
qualitative picture of the unrestricted molecular orbitals of H, as a function
of 6. While we have derived this picture using the minimal basis, the figure
is qualitatively correct for H, with any basis set.

We have seen that for the ground state of a closed-shell molecule like
H, it appears possible to define unrestricted wave functions which have the
qualitatively correct behavior that we expect for the dissociation process.
It remains to relate these unrestricted wave functions to solutions of the
Hartree-Fock equations. If we solve the Pople-Nesbet equations, will a non-
zero value of 0 be obtained? To investigate this question, we need to deter-
mine the energy as a function of 6.

The electronic energy of an unrestricted single determinant wave func-
tion for H,,

|¥o> = [WSWAQ) (3.367)
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Figure 3.16 Qualitative behavior of unrestricted molecular orbitals ¢ and ¥£ for H, as a
function of 6.

is just the kinetic energy and nuclear attraction of each electron, plus the
coulomb repulsion between the two electrons. That is,
Ey = (‘Popﬂ‘{’o) = hi; + hql + Jﬁ
= (ilhWe) + WERD + (Wivs |vivd) (3.368)

Substituting the expansions (3.358) and (3.359) into this expression, we can
write the electronic energy, as a function of 0, in terms of molecular integrals

PR [

of the restricted problem
E(0) = 2cos?0h,, + 2sin?0h,, + cos*0J
+ sin*0J,, + 2sin2 6 cos? 0(J;, — 2K, ,) (3.369)
If 0 = 0, the unrestricted energy just reduces to the restricted energy
Ey)0) = 2hyy +J 14 (3.370)
The first derivative of the unrestricted energy with respect to 0 is
dE(6)/d6 = 4 cos 0 sin B[ hy; — hyy + sin?0J,, — cos? 0J 4,
+ (cos?0 —sin? 0)(J,, — 2K5)]  (3.371)

To find the values of 8 which solve the Pople-Nesbet equations, i.e., to
find the values of 8 which make the unrestricted energy stationary, we set
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the first derivative of the unrestricted energy to zero,
dEy(0)/d0 = AB =0 (3.372)
where ,
A =4cosf sinf (3.373)
and
B=h,,—hy, +sin?0J,, —cos? 0J;, +(cos? 0 —sin® O)(J,,—2K,,) (3.374)

There are thus two ways the energy could be stationary:

1. A = 0. This is the restricted solution. The condition is satisfied if 6 = Q.
2. B=0. This is the unrestricted solution. The condition is satisfied and
there exists an unrestricted wave function only if there is a solution to:

cos20 = 1 (3.375)
where
n=(hyz—hy1+J22—J12+2K5)/(J 1 +J32— 2012 +4K, ;) (3.376)

This last equation is obtained by setting B of Equation (3.374) to zero. This
equation has a solution only if the internuclear distance and basis functions,
and hence the molecular integrals h, 4, h;,, etc.,, are such that # lies between
zero and one, i.e, 0 <np < 1.

Exercise 3.43 Use the molecular integrals given in Appendix D to show
that no unrestricted solution exists for minimat basis STO-3G H, at R =

1.4a.u. Repeatthecalculationfor R = 4.0a.u. andshowthat anunrestricted

ALt ; : — ‘
solution exists with 9 = 395 . Remember that &1 = hll -+ .111 and €9 =

hy, +2-]12 — K,.

To proceed with the analysis let us investigate the nature of the restricted
solution (0 = 0) by evaluating the second derivative of the energy (at the
restricted solution),

d*Eo(0)/d0%]g- o = E50) = 4(hyy — hyy —J 11 + 12 — 2K12)
- 4(82 - El e le - KIZ) (3.377)
The nature of the restricted solution is determined by this second derivative.

Eg(0) > 0, it is an energy minimum. I Eg(0) < 0, it is an energy maximum.
IfE(O) = {), t.e., if

h22 _ hll = 111 - J12 + 2K12 (3.378)

then the restricted solution is a saddle point. Substituting this last saddle
point condition into Eq. (3.376), we findthat#n = 1at the saddle point. Using
the molecular integrals of Appendix D we can investigate the behavior ot
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e -~ Figure 3.17 Qualitative behavior of the
unrestricted energy of H, as a function
- of 6 for small and large internuclear
o 8 distances: a) small R; b) large R.

EH(0) and » as a function of bond length. At short bond lengths E4(0) > 0
and » > 1. As the bond length increases both Eg(0) and # decrease mono-
tonically, until they reach a limit at R = oo of Eg(0) = —1/2 (¢,¢,|¢,¢,)
and n = 1/2. At a transition point, which occurs in the vicinity of R = 2.3 a.u,,
the second derivative E3(0) becomes negative and simultaneously n becomes
less than 1. The behavior of the solutions is therefore as follows: At short
bond lengths 5 > 1, the restricted solution is a true minimum, and no un-
restricted solution exists. On increasing the bond length the value of »
decreases until, at a distance of approximately 2.3 a.u., # becomes 1 and a
saddle point occurs in the energy. This transition point defines the onset of
an unrestricted solution. At a bond length beyond this, the restricted solu-
tion (6 = 0) is actually a maximum in the energy as shown in Fig. 3.17. When
an unrestricted solution exists (y < 1), the value of # can be equated to
cos? 0. As the bond length becomes larger and larger,  gives to the limit of
45° appropriate to isolated hydrogen atoms. A potential curve for STO-3G
H, showing the two solutions is shown in Fig. 3.18. The unrestricted energy
goes smoothly to the limit of two hydrogen atoms calculated with the same
basis set, i.e., 2(¢, |h|¢,). The restricted energy goes to a limit 1/2(¢,¢, | ¢, ¢,)
above the right result. Also shown in Fig. 3.18 is the essentially exact result
of Kolos and Wolniewicz.® The hydrogen atom energies used in the figure
(— 04666 and —0.5) are obtained with the basis sets employed in the respec-
tive methods. Thus, both curves go to zero at large R. The corresponding
curves for a 6-31G** basis set are shown in Fig. 3.19.

The “correct” dissociation of H,, which we have obtained by using an
unrestricted wave function, is not free of faults. The unrestricted wave
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function is not a pure singlet as one would like it to be. The energy goes to
the correct limit but the total wave function does not, as we shall now see.
In the limit R — oo, the molecular orbitals become /' = ¢, and ¥4 = ¢,
and the unrestricted single determinant [¥,) of Eq. (3.367) becomes

limit [¥> = |¢,(1)$2(2)> (3.379)
This, however, is not the correct form for a singlet wave function in which
electrons occupy different spatial orbitals ¢, and ¢,. In analogy to Eq.
(2.260), the singlet wave function should be

limit [D0> = 27 2[|1(1)§22)) + |$2(1)§1(2))] (3.380)

The orbitals are correct but the total wave function is not. An alternative
way of looking at this problem is obtained by substituting the expansions
(3.358) and (3.359) for the unrestricted molecular orbitals into the single
determinant [¥o) and expanding the determinant

|lP0> = IM\W) = cos’ 9|'/’1|/_11> — sin’ Blllfz'yﬁ
—(2)Y2 cos 0 sin O |19, — 201 >1/(DY?

= cos? 0|y, > — sin® 0|4,
—(2)'72 cos 0 sinOPP¥2) (3.381)

Here, [*W1) is the singly excited triplet configuration defined in Eq. (2.261).
The closed-shell determinants |y ;,> and Jy.0,) are, of course, singlets.
An unrestricted single determinant for the ground state of H, is thus not a
pure singlet but is contaminated by a triplet. The mixing of the doubly
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AL ALWAL \.l\ul.\rl].l.ll.l.laljl. IlF Zl‘U 2/ VYALLL Iq} 1({}1/ ALIVYYD LLIL UIooUGIAbiuAil Lv BU (8 W)

the correct limit, but the triplet contaminant is required if the final wave
function is to be a single determinant. As R — oo the triplet contamination
increases until it represents 509, of the wave function,

limit [¥6) = 1/2[:F0> — Wala> — @] (3382

Although the correct dissoctation energy 1s obtained using an unrestricted
wdve 1unCuGu, the POOGI wave function will limit the ucauauuu_y of ublug,
near the dissociation limit, an unrestricted single determinant as a starting

point for configuration interaction or perturbation calculations,

Exercise 3.44 Derive Eq. (3.379) from Eq. (3.382).

We have only discussed the restricted Hartree-Fock dissociation prob-
lem for the minimal basis model of H.. The ideas nresented are not limited
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to H,, however, and very similar effects will occur for other closed-shell
systems when a bond is stretched. In H,, the onset of unrestricted solutions
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even be unrestricted solutlons at the experimental geometry. By an exten-
sion of our analysis, it is possible to derive general conditions under which
there exists an unrestricted solution lower in energy than the closed-shell
restricted solution (Thouless, 1961).
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