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b. For benzene, show that the diagrammatic result for the fourth-order
energy agrees with the independently calculated result found in Exercise
6.6.

6.5 PERTURBATION EXPANSION OF THE
CORRELATION ENERGY

In this section, we consider the problem of improving the Hartree-Fock™
energy of an N-electron system by means of perturbation theory. In other
words, we wish to obtain a perturbation expansion for the correlation energy.
We partition the Hamiltonian as

H =M+ (6.58)
where #, is the Hartree-Fock Hamiltonian,
Hy = ; fli) = ; [h() + v ()] (6.59)
and
V=Yt ==Y r;t =Y M) (6.60)
i<j i<j i

The use of the above partitioning of the Hamiltonian, along with the general
expressions of RS perturbation theory, is sometimes called Mgller-Plesset
perturbation theory.

In this section, we will use the physicists’ notation for two-electron
integrals rather than the chemists’ notation, which we used extensively in
Chapter 3. We do this not out of perversity or even laziness but because
almost all the literature in this area uses this notation, and we believe that
one should develop equal facility with both notations. Recall that in the
physicists’ notation

fdxl dx, X?(xl]X?(xz)rl_zlh(xl))fi(xz) = (iflkl> (6.61)

It is important to remember that i and k label the spin orbitals which are
functions of the coordinates of electron-one while j and I refer to spin orbitals
which depend on the coordinates of electron-two, i.c.,

ik

i

Wt

Recall that the antisymmetrized two-electron integral is defined as

Cj| [kIy = Cij|kIy — Cif| Ik (662)
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Using this notation, we have

\‘ro 2 1 ‘ra,,> = {a'ﬁi ir") {6.63)
i<j
and
UHF(I)Xj(xl) = Z <b|r1_21|b)Xj(x1) - ; (blrlel.i)Xb(xl) (6.64)
b
Thus

G|F|jy = ofF = ); (ib| jby — (ib|bj)y = )b: (b} | jb)y (6.65)

The Hartree-Fock wave function |¥,) is an eigenfunction of 3,

22 T\ — Ohas (& £
JlolTos = Lo |Yo/ LASALNAS)
with the eigenvalue
EE)O’ = Z £, (6.67)
a

which is just the zeroth-order perturbation energy. The first-order energy is
E} = (‘POI’V[‘PO)
= (‘Pol Z llpo> (lpolz UHF(’)I‘*‘O)

i<j
— L N Cabllaby — ¥ aloTFlay
2 f?: wleys %4 A ! AR
1
=32 {ab||ab) (6.68)

The Hartree-Fock energy is the sum of the zeroth and first-order energies,

=EQ+EP =) ¢,— % Y {ab]|ab) (6.69)
a ab

Thus the first correction to the Hartree-Fock energy occurs in the second
order of perturbation theory.
The general result for the second-order energy, derived in Section 6.1, is

2
E(O) E® :
where the summation runs over all but the ground state of the system
Clearly, we take ]0) = | > but what about [n)? These states cannot be

single excitations since
QPO VW) = (P o| o — AP0
= C¥o|H|YD> ~ for =0
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The first term vanishes because of Brillouin’s theorem and the second
because the spin orbitals are eigenfunctions of the Fock operator. In addition,
triply excited states do not mix with |\¥,) because of the two-particle nature
of the perturbation. Therefore, we are left with double excitations of the
form |\P75>. Since

'#O"P;i)> = (EOO) - (Ea + & — & — 85))"‘1’:;,)

and because we can sum over all possible double excitations by summing
over all a and all & greater than a and over all r and all s greater than r, the
second-order energy is
, Z I(‘Pol Z, r;ll\{lﬁ))lz |(ab| lrs>|2
E{) ) == 1=J = Z

a<b £a+8b__£r—ss a<b Eat Ep— & — &
r<s r<s

(6.71)

Note that the second-order energy can be expressed as a sum of contributions
from each pair of electrons in occupied orbitals,

2 FO
EE))= Z €ab

a<b

where

o= Y |<ab||rs> |
“ r<sfat & — & — &

We have seen in Chapter 5 that ef is the first-order pair energy. Thus at the
level of first-order pairs, pair theory gives the same correlation energy as
second-order perturbation theory.

The expression for the second-order energy can be transformed into a
number of other useful forms. Since the quantity being summed is sym-
metric in a and b and r and s, and vanishes when a = b or r = s, we can write

| V2 N I PN

1 12
E(Z) — i |gao| |r‘5)| 672
0 4,,;:36,,—{—6,,,—e,—es ¢ )

Furthermore, in terms of regular two-electron integrals, the second-order
energy is

(ab|rs)(rs|ab) 1 {ab|rs){rs|ba)
— 5 Z

abrs €a + Ep — & — &

1
E? =— 6.73
0 2a§s£a+£b—'8r_as ( )

Finally, for a closed-shell system, the second-order energy can be written in
terms of sums over spatial orbitals as
& Lab|rsy<rs|aby & (ab|rs){rs|ba)

EP=2Y L
abrssa+£b_8r_£s abrs €q + & — & — &

p—
o)
=
>

S

Exercise 6.8 Derive Egs. (6.73) and (6.74) starting with Eq. (6.72).
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In a similar, but much more laborious way, starting with Eq. (6.15)
it can be shown that the third-order energy is

E® 1 5 {ab||rs){cd||ab){rs||cd)
° 8 abedrs (Ga + & — & — 85)(8‘. + &g — & — 85)
+1 — {ablrs)<rs|{tud<tu] jab)

8 abrstu (sa + &, — & — 8:)(811 + & — & — Eu)

LY ab||rs> {cs||th> {rt] Jac) (6.75)

abcrst (aa + € — & — Ss)(ea + & — & — Sl)

As an illustration of the above formalism, we now calculate the second
and third-order energies of minimal basis H,. In Chapter 4, we showed that
the exact correlation energy of H, in the minimal basis set is

E_. =A— (A% + K2,)V2 (6.76)

corr

2A= 2(82 —81)+Jll +J22 - 4J12 + 2K12
= 2e, — &) + (11|11 + (22]|22) — 4€12|12) + 2¢11]22)

If we expand the expression for the correlation energy in a Taylor series in
the two-electron integrals up to third order, we find

| d — (2 , B3) o ...
Liggyy — Ligp T Lg T

where
KZ
2 — 12 6.77)
O T e, — &)
and
E53)=Kf2("11 +J3, —4J ), + 2K,) 6.78)

4(e, — 82)2

We will now show that the second-order energy in Eq. (6.77) is a special
case of the general expression given by Eq. (6.74). Since we have but a single
hole orbital, a = b = 1. Similarly, r = s = 2 so that Eq. (6.74) becomes
111920 ¢22111y 2111228 e 2111y

i It A Setnd Sel AU Setall Intnd A0 Snind Satatd
2y — &) 2eq — &)
_Knj2)* _ Ki

2(e; —&3)  2(g, — &)

In Section 6.7.2, we will show that the general expression for the third-order
energy, given in Eq. (6.75), can be used to obtain the result given in Egs. (6.78).
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Exercise 6.9 Derive Egs. (6.77) and (6.78) from {6.76).

6.6 THE N-DEPENDENCE OF THE RS
PERTURBATION EXPANSION

In the introduction to this chapter, we mentioned that Brueckner was the
first to investigate the applicability of the RS perturbation expansion of
infinite (macroscopic) systems. He was able to show, by a careful examina-
tion of the algebraic expressions that appear in various orders, that EJ for
n=20,1,...,6was indeed proportional to the number of particles. He was,
however, unable to prove this in general (i.e., forn =7, 8, ..., c0). Here we
present a simple illustration of Brueckner’s analysis. In Subsection 6.7.2 we
shall discuss Goldstone’s linked cluster theorem which, using a diagram-
matic representation of RS perturbation theory, is proof of Brueckner’s
conjecture that RS perturbation theory is satisfactory in all orders. We
consider a supermolecule consisting of V noninteracting minimal basis H,
molecules. We will show, using the ge :eral expressions derived in Section
6.1, that t the first-, second-, and third-order encrgies of the aupermulecule
are simply N times the corresponding results for a single molecule. This is
precisely the model we used to show, in Chapter 4, that the DCI result for
the correlation energy was proportional to N'/? in the limit of large N.
Recall that we label the orbitals of the supermolecule as:

2 2, 25 2y

€z

1, 1, 1, iy

and that all two-electron integrals involving orbitals from different units are
zero. The Hartree-Fock wave function for this system is

|lP0> = |11T112T2 e 1yl (6.79)

If /%, is the Hartree-Fock Hamiltonian as in the previous section, the zeroth-
and first-order energies are

E® = (‘{‘0\,%"0]‘}‘0) 2 Z 1 |f|1 > =2Ng, (6.80a)
and
N
EQP = (¥o[¥|Pod = — ) <LLjLL) = —NJy, (6.80b)
i=1

The Hartree-Fock energy of the supermolecule,
Eq = (V| H#o+ ¥ |Wo) = E + E) = N(2¢; — J 1) (6.81)
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is indeed simply N times the Hartree-Fock energy of one subunit. The
general expression for the second-order energy (Eq. (6.12)) is

<O [m|?
E(O) E(O)

E(OZ)_Z I

(6.82)

Clearly, |0y = |¥,) and the state [n> must be a double excitation of the type
[¥2:2:>. For these excitations

E(( —E(O)=2(£1—82) (6.833)
(P[P 933> =<1,1122) — <1122, = <11]22) = K,, (6.83b)

and the summation over n can be replaced by a summation over i, so that

E® § [KP ¥ T¥3IOP _ NK}
O T E 2 —e) 2 —gy) (6.84)

which again is just N times the second-order energy of one unit.
The general expression for the third-order energy (Eq. (6.15)) is

E(O3) —_ A(03) +B(03) (6.85)
where
, SO In) (| # ) <m| 7|0
Ag;n___.zn: ; (ES — EOES — EO) (6.86)
and
BY = E(“Z <O |n>| (6.87)

(E — EP)?

At first glance, the third-order energy does not appear to have the correct
N dependence, since B is proportional to N2:

K NZ‘II IK;IZZ
1 (284 — 282)2 A&, —&;)°

N
B® = —(—NJ,,) Z (6.88)

where we have used Eqgs. (6.80b) and (6.83a,b). If the third-order energy is to
be proportional to N, this term must be cancelled by a part of AS). This is
just the type of cancellation that Brueckmer found, as discussed in the
introduction to this chapter. Let us now examine A}? more closely. It is
clear that both |n> and [m) must be states of the type |¥}3) so that

. 1 LIV"P 12

a9 =y <

r=1 4(81 - 82)

(6.89)

where only the diagonal element remains since two-electron integrals
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involving different units are zero. It can be shown that
CPEHY I = (PR — |9 hh:
=—'NJ11 +Jll +J22‘—4J12+2K12 (6.90)

so we have
A3 — _Nlelefz + NK3(J11 + J22 — 412 + 2K4)) (6.91)
0 3 ) -
4(e; — &) 4(e; — &)
Thus the N? terms do indeed cancel, leaving us with

NK$,(Jyy + Jpy — 404, + 2K))
4(e, “32)2

As with E{V and E{, this is just N times the third-order energy of a single
H, molecule (Eq. (6.78)). Recall that Eq. (6.78) was obtained by expanding
the exact correlation energy within the basis in a Taylor series, so that the
equivalence of the expressions derived in different ways provides a consis-
tency check. Although this example is by no means a proof, we hope it will
inspire some confidence in the statement that RS perturbation theory—in
contrast to DCI—yields an approximation to the correlation energy which

Fa% ot of ="

: M ot + {3 1. tl
is size consistent (i.e., has the correct N-dependence).

3) _ 3 3) _
EQ = AP + BY =

(6.92)

Exercise 6.10 Derive Egs. (6.80b) and (6.90).

*6.7 DIAGRAMMATIC REPRESENTATION OF THE
PERTURBATION EXPANSION OF THE CORRELATION
ENERGY

We now introduce a diagrammatic representation of the nth-order energy.
Our zeroth-order wave function is taken to be the Hartree-Fock function.
Although it is possible to derive a perturbation expansion starting with any
single determinantal wave function, the Hartree-Fock description is the most
convenient starting point because of Brillouin’s theorem. The fact that single
excitations do not mix with the Hartree-Fock ground state considerably
simplifies the structure of the perturbation expansion. The rules we give for
constructing the diagrams will be correct only for Hartree-Fock perturbation
theory. Although we will not “derive” the rules for constructing and evalua-
ting the diagrams, we hope that the formalism will appear as a “natural”
generalization of our previous results.

6.7.1 Hugenholtz Diagrams

As before, we represent an interaction by a dot and a hole or a particle state
by a line with an arrow pointing down or up, respectively. Looking back to
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systems that are characterized by degenerate or nearly degenerate electronic configurations. For
such systems, MCSCF wave functions and multireference CI wave functions are better suited.

When the Hartree—Fock description is reasonably accurate — as for the stable water molecule —
the restricted CCSD model appears to provide a satisfactory representation of the FCI wave
function. Although less accurate than CCSDT, it represents a useful compromise between accuracy
and cost and can be routinely applied to relatively large molecular systems in a black-box manner.
The excellent performance of the CCSDT model is quite remarkable but its cost is so high that
it is applicable only to small systems. For most purposes, however, the CCSDT model may be
replaced by the CCSD(T) model at little or no loss of accuracy, making it possible to carry out
highly accurate calculations on systems containing up to ten atoms.

5.8 Perturbation theory

When the Hartree—Fock wave function provides a reasonably accurate description of the electronic
structure, it is tempting to try and improve on it by the application of perturbation theory. Indeed,
this approach to the correlation problem has been quite successful in quantum chemistry — in
particular, in the form of Mgller—Plesset perturbation theory, to which we now turn our attention.

5.8.1 M@LLER-PLESSET PERTURBATION THEORY

In Mgller—Plesset perturbation theory (MPPT), the electronic Hamiltonian H in (5.1.2) is parti-
tioned as L
H=f+®+ hyy (5.8.1)

where ? is the Fock operator (5.4.4) of Section 5.4.2, & the fluctuation potential and hy,. the
nuclear—nuclear term. The fluctuation potential represents the difference between the true two-
electron Coulomb potential g of the Hamiltonian operator (5.1.2) and the effective one-electron
Fock potential V of the Fock operator (5.4.5):

S=H—F—hp=8-V (5.8.2)

In MPPT, the Fock operator represents the zero-order operator and the fluctuation potential the
perturbation. The zero-order electronic state is represented by the Hartree—Fock state in the canon-
ical representation

FIHF) =" &|HF) (5.8.3)
I

where the summation is over the occupied spin orbitals. The excited zero-order states are spanned
by all single, double and higher excitations |t} with respect to the Hartree—Fock state.
Applying the standard machinery of perturbation theory, we obtain to second order in the

perturbation
Effy = (HF|fIHF) =) g (5.8.4)
I
E{} = (HF|®|HF) (5.8.5)
_ |2
Eﬁl})= . Z |gaips — gasnr (5.8.6)

ABI-g EATEB —E1 — &
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in the spin-orbital basis. Thus, the Hartree—Fock energy is equal to the sum of the zero- and
first-order corrections

Enr = Egh + Epgp + hroe = (HF|H |HF) (5.8.7)
and, by adding the second-order correction, we obtain the second-order Mgller—Plesset energy
Errey — E© 1) @) \gares — 8asnil?
“mp2 = Eyp + Eyp + Eygp + hinue = Enp — Z (5.8.8)

A-B1-1 EA +ep— & — gy

The MP2 model represents a highly successful approach to the correlation problem in quantum
chemistry, providing a surprisingly accurate, size-extensive correction at low cost. Higher-order
corrections may be derived as well. The MP3 and MP4 corrections, in particular, have found
widespread use but represent less successful compromises between cost and accuracy than does
the MP2 correction. For a detailed exposition of perturbation theory, we refer to Chapter 14.

5.8.2 THE GROUND STATE OF THE WATER MOLECULE

Let us consider the application of Mgller—Plesset theory to the calculation of the dissociation
curve of the water molecule. In Figure 5.19, we have plotted the cc-pVDZ potential-energy curves
of the restricted and unrestricted Mgller—Plesset models at the MP2, MP3 and MP4 levels. Close
to the equilibrium geometry, the restricted MP2 energy represents a significant improvement on
the Hartree—Fock energy. Referring to the CI energy curves in Figure 5.16, we find that the MP2
energy compares favourably with that of the more expensive CISD wave function, in particular
when we recall that the MP2 correlation correction is size-extensive. The comparison with coupled-
cluster theory in Figure 5.18 is less favourable.

The restricted Mgller—Plesset description of the dissociation process is improved as we go to
higher orders in perturbation theory, in particular at the MP4 level. However, as for all methods
based on the dominance of a single electronic configuration, the description deteriorates as the
OH bonds are stretched, although the MP4 curve is quite satisfactory for bond distances up to
3.5a¢. For sufficiently large distances, the restricted potential-energy curves diverge at all levels
of theory.

The performance of the unrestricted Mgller—Plesset theory is perhaps somewhat surprising:
even though the unrestricted theory performs well in the dissociation limit, its performance in the
intermediate region is altogether unsatisfactory. Thus, the hump apparent in the coupled-cluster
dissociation curve in Figure 5.18 is now much more prominent and persists even at the MP4 level.
In addition, a kink has appeared where the restricted and unrestricted curves separate. Clearly,
unrestricted Mgller—Plesset perturbation theory does not provide a uniform description of the
dissociation process and does not appear to be an appropriate tool for the study of such processes.

5.8.3 CONVERGENCE OF THE M@LLER-PLESSET PERTURBATION SERIES

Like any perturbation method, the Mgller—Plesset series does not converge unconditionally. In
Table 5.12, we have listed the restricted Mgller—Plesset energies up to order 15 at Rr and 2R ..
Although the series converges at the equilibrium bond distance, the convergence is less obvious at
2Rer. Clearly, at some point along the dissociation curve, the dominance of the RHF determinant is
sufficiently eroded to destroy the convergence completely, although the exact location for the onset
of the divergence would be difficult to pinpoint. For a discussion of convergence in Mgller—Plesset
theory, we refer to Section 14.5.
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Fig. 5.19. The Mgller—Plesset dissociation curves of the C, water molecule in the cc-pVDZ basis (atomic
units) for a fixed HOH bond angle of 110.565°. In the two uppermost figures, we have on the left plotted
the restricted MP2 dissociation curve (full black line), the unrestricted MP2 curve (dashed black line) and
the FCI curve (grey line); on the right, we have plotted the corresponding differences between the MP2 and
FCI energies. In the middle and lower figures, we have made similar plots for the MP3 and MP4 models.

As a minor point of interest, we note that the Mgller—Plesset energy in Table 5.12 occasion-
ally falls below that of the FCI wave function. This behaviour should not surprise us since the
Mgller—Plesset energy (like the coupled-cluster energy) is not variational. Indeed, we have already
seen in Figure 5.19 that the unrestricted Mgpller—Plesset energy may be higher than the corre-
sponding restricted energy, which would never happen for a variational wave function.

5.8.4 THE GROUND STATE OF THE HYDROGEN MOLECULE

As another illustration of the performance and, in particular, the conditional convergence of the
Mgller—Plesset series, we have in Figure 5.20 plotted the restricted MP2, MP3, MP4 and MP50
dissociation curves for the hydrogen molecule in the cc-pVQZ basis. For comparison, we have
also plotted the FCI and RHF dissociation curves in the same basis.
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Table 5.12 The differences (Epp, — Erci) between the
restricted cc-pVDZ Mgller—Plesset energies and the FCI
energy (in E;,) of the C;, water molecule at the OH sepa-
rations Rys and 2R,.r. The HOH bond angle is fixed at
110.565° and R = 1.84345a,

R= RM R == 2Rl‘ef
RHF 0.217822 0.363954
MP2 0.013131 0.054730
MP3 0.006439 0.069096
MP4 0.001069 0.016046
MP5 0.000511 0.016686
MP6 0.000130 0.004300
MP7 0.000067 0.000626
MP8 0.000014 —0.000475
MP9 0.000011 —0.002065
MP10 —0.000001 —0.001652
MP11 —0.000002 —0.001332
MP12 0.000000 —0.001130
MP13 (.000000 —0.000523
MP14 0.000000 —0.000397
MP15 0.000000 —0.000146
MP5G
RHF
-0.8
MP4
=10} F(1
MP2
-1.2
—~1.4
MP3

Fig. 5.20. The cc-pVQZ potential-energy curves of the hydrogen molecule at the FCI, RHF, MP2, MP3,
MP4 and MPS50 levels (atomic units). The oscillations in the MPS0 potential-energy curve for bond lengths
beyond 6ag are not shown.

For bond distances shorter than Say, the perturbation series converges and MPPT provides
excellent representations of the FCI curve, particularly for distances shorter than 3ay. At 5-6ay,
however, the MPPT convergence is disrupted, as seen from the pathological behaviour of the
MP30 curve. Also, the lower-order curves behave in an unphysical manner for long bond distances,
although in a less spectacular fashion. Thus, the MP2, MP3 and MP4 curves bend downwards
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and intersect the FCI curve at the internuclear separations of 9.5, 6.4 and 5.2a. respectively. At
a separation of 13.2ag, the MP4 curve rises above the FCI curve again.

5.8.5 FINAL COMMENTS

Mgller—Plesset perturbation theory represents a useful approach to the calculation of size-extensive
correlation energies for systems dominated by a single electronic configuration. The MP2 model, in
particular, represents a successful compromise between computational cost and accuracy. Higher-
order corrections may also be calculated, but it should be emphasized that the Mgller—Plesset
series does not converge unconditionally.

The application of Mgller—Plesset theory is limited to systems dominated by a single config-
uration, making the theory ill suited to the study of near-degeneracy problems. Also, since
Mgller—Plesset theory is based on the Hartree—Fock description, it is not well suited to the study
of excited electronic states. For such problems, multiconfigurational perturbation theory has been
developed, based on the dominance of an active reference space. Multiconfigurational perturba-
tion theory is discussed in Chapter 14, as part of a detailed exposition of perturbation methods in
electronic-structure theory.
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Exercises

EXERCISE 5.1

Calculate the overlap integral
S= f Isa(r)lsg(r)dr (SE.1.1)
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