ESTRUCTURA DE LA MATERIA 4

Primer Cuatrimestre de 2018

PRÁCTICA 5: MECÁNICA CUÁNTICA RELATIVISTA

1. Encuentre las expresiones para las densidades de probabilidad ρ y las corrientes de probabilidad $\vec{J}(x,t)$ en términos de las soluciones de las ecuaciones de Schrödinger y Klein-Gordon asumiendo la validez de la ecuación de continuidad $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0$.

Ayuda: en cada caso, escriba la diferencia entre dichas ecuaciones y sus conjugadas luego de ser multiplicadas por el conjugado de su solución.

2. Dadas las matrices

$$lpha^i = \left(egin{array}{cc} 0 & \sigma_i \ \sigma_i & 0 \end{array}
ight) \qquad eta = \left(egin{array}{cc} I & 0 \ 0 & -I \end{array}
ight),$$

muestre que definiendo $\gamma^0 \equiv \beta$ y $\gamma^i \equiv \beta \, \alpha^i$ se verifica

$$\{\gamma^{\mu},\gamma^{\nu}\}\equiv\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}.$$

Nota: estas matrices γ constituyen la representación de Dirac.

3. Sea la ecuación de Dirac escrita en forma covariante,

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi(x)=0.$$

(a) Halle las cuatro soluciones en reposo linealmente independientes:

$$u^{(1)}(m,\vec{0}), u^{(2)}(m,\vec{0}), u^{(3)}(m,\vec{0}), u^{(4)}(m,\vec{0})$$

junto a sus respectivas dependencias temporales. Piense qué quiere decir energía positiva o negativa.

(b) Operando a partir de la ecuación de Dirac, obtenga la ecuación de continuidad

$$\frac{\partial \rho_{Dirac}}{\partial t} + \vec{\nabla} \cdot \vec{J}_{Dirac} = 0$$

mostrando que $\rho_{Dirac} = \psi^{\dagger} \psi$ y $\vec{J}_{Dirac} = \psi^{\dagger} \vec{\alpha} \psi$.

(c) Halle el Hamiltoniano de Dirac que permite escribir la ecuación de Dirac como una ecuación de Schrödinger,

$$H\psi=i\partial_t\psi.$$

4. Momento angular total:

(a) Demuestre que el Hamiltoniano de Dirac no conmuta con el operador de impulso angular orbital \vec{L} , pero sí lo hace con el de impulso angular total $\vec{J} = \vec{L} + \vec{S}$, con \vec{S} dado por

$$\vec{S} \equiv \frac{1}{2} \vec{\Sigma}$$

con

$$ec{\Sigma} = \left(egin{array}{cc} ec{\sigma} & 0 \ 0 & ec{\sigma} \end{array}
ight)$$

- (b) Muestre que el operador \vec{S} definido de esa manera satisface el álgebra de impulsos angulares, y además tiene autovalores $\pm 1/2$ ($\pm \hbar/2$ en unidades anti-naturales).
- (c) Verifique este operador satisface el valor de J^2 esperado para una partícula de espín 1/2.
- 5. A partir de las soluciones para partícula libre de la ecuación de Dirac con E>0, verifique que en el límite no relativista las componentes inferiores (o débiles) del espinor de Dirac son de orden v/c respecto de las superiores (o fuertes), y que estas últimas tienen la forma de una solución de Schrödinger para partícula libre multiplicadas por un espinor de Pauli de dos componentes.
- 6. A partir de la sustitución $\vec{p} \to \vec{p} q\vec{A}$ y $E \to \varepsilon_{NR} + m q\Phi$ en la ecuación de Dirac muestre que, en el límite no relativista y de campos débiles, las componentes superiores de las soluciones con E>0 satisfacen la ecuación de Schrödinger-Pauli que aprendió en Mecánica Cuántica,

$$\left(\frac{1}{2m}(\vec{p}-q\vec{A})^2+q\Phi-g\frac{q}{2m}\frac{1}{2}\vec{\sigma}.\vec{B}\right)\psi=\varepsilon_{NR}\psi,$$

donde g es el factor giromagnético del electrón que, si hizo las cuentas bien, habrá llegado a que g = 2.

- 7. Considere una transformación de Lorentz $x^{\mu} \to x^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$ que transforma al espinor ψ según $\psi \to \psi' = S_{\Lambda} \psi$ donde $S_{\Lambda}^{-1} \gamma^{\mu} S_{\Lambda} = \Lambda^{\mu}_{\ \nu} \gamma^{\nu}$. Sabiendo que para una transformación infinitesimal para el operador S se obtiene $S = 1 \frac{1}{8} [\gamma_{\alpha}, \gamma_{\beta}] \varepsilon^{\alpha\beta}$ (donde $\varepsilon^{\alpha\beta}$ son los parámetros de la transformación) muestre que
 - (a) $S^{\dagger} \gamma^0 = \gamma^0 S^{-1}$
 - (b) $\bar{\psi}' = \bar{\psi}S^{-1} \operatorname{con} \bar{\psi} = \psi^{\dagger} \gamma^{0}$.
 - (c) $\bar{\psi}\psi$ es invariante de Lorentz.
 - (d) $j^{\mu} = \bar{\psi}\gamma^{\mu}\psi$ es un cuadrivector.
 - (e) $\bar{\psi}\gamma^5\psi$ es un pseudoescalar.
 - (f) $\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$ es un pseudo-cuadrivector.
- 8. Muestre que $\gamma^5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3$ es hermítico, de cuadrado unitario, y que anticonmuta con las cuatro matrices de Dirac. γ^5 es conocido como el operador de quiralidad.

- 9. Muestre que el operador de helicidad $\frac{1}{2}\vec{\Sigma}$. \hat{P} con $(\hat{P} = \vec{P}/|\vec{P}|)$, que da la proyección del spin en la dirección de movimiento, conmuta con el Hamiltoniano de Dirac y con el operador de impulso \vec{P} , de forma tal que se lo puede agregar a estos para formar un conjunto completo de observables que conmutan.
- 10. Demuestre que en el límite altamente relativista, la acción de γ^5 sobre los espinores $u(\vec{p})$ es la misma que la del operador de helicidad, es decir γ^5 coincide con el operador de helicidad

$$\gamma^5 u(\vec{p}) = (\vec{\Sigma}.\,\hat{p})u(\vec{p}).$$

Por otro lado, verifique que para las antipartículas, quiralidad y helicidad son opuestas

$$\gamma^5 v(\vec{p}) = -(\vec{\Sigma}.\,\hat{p})v(\vec{p}).$$

11. Partiendo de la definición de los operadores $P_{\pm} = \frac{1}{2}(1 \pm \gamma^5)$, demuestre las siguientes propiedades

que son proyectores $P_{\pm}^2 = P_{\pm}$ sobre espacios disjuntos $P_{+}P_{-} = 0$ complementarios $P_{+}+P_{-} = 1$ y que corresponden a la quiralidad $P_{+}P_{+}$ $P_{+}P_{-} = 1$

12. Además de la representación de Dirac para las matrices γ, existe la representación de Weyl (o quiral),

$$\gamma^0 = \left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight) \quad \gamma^j = \left(egin{array}{cc} 0 & \sigma^j \ -\sigma^j & 0 \end{array}
ight).$$

- (a) Muestre que estas matrices también cumplen con la condición $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$.
- (b) Muestre que en esta representación la función de onda se puede escribir $\psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$, donde $\psi_L = P_L \psi$ representa la parte de quiralidad *left* y $\psi_R = P_R \psi$ la parte de quiralidad *right* de la función de onda.
- (c) Muestre que para partículas muy livianas o ultrarelativistas, la ecuación de Dirac se desacopla en dos ecuaciones diferentes para ψ_L y ψ_R