Resolucion de problemas de potencial complejo usando Mathematica

En este post les dejo un notebook de Mathematica, en el cual les muestro cómo explotar la potencia de esta herramienta de cálculo simbólico (y numérico!) para resolver problemas de flujos potenciales bidimensionales.

En particular, el notebook trata un problema que vimos ya en teoricas: el flujo alrededor de un cilindro con una circulación atrapada que enfrenta un flujo uniforme al infinito.

La idea detrás de este post es que tengan una guía de cómo resolver y analizar este ejercicio en Mathematica, teniendo en cuenta que ustedes conocen ya la física del problema. El propósito subyacente es que, si así lo desean, puedan extrapolar lo que aprendan aquí a la resolución de cualquier otro problema de la guía de trabajos practicos.

Curvas de nivel de la función corriente (trazo continuo), de potencial (líneas punteadas) y campo de presiones (en color) para un caso particular de los parámetros del problema.

 

Sólo a modo de sumario, les cuento qué tipo de cálculos aprenderán a hacer en Mathematica usando este notebook. Entre otras cosas, verán cómo: (i) definir un potencial complejo, (ii) aplicar el teorema del círculo de Milne-Thomson, (iii) determinar las funciones potencial y de corriente, (iv) calcular los campos de velocidad, (v) obtener el campo de presiones en todo punto del espacio usando el teorema de Bernoulli y (vi) calcular la fuerza sobre el obstáculo mediante: (a) la integral de presión sobre el contorno sólido y (b) el teorema de Blasius via el cálculo de residuos. Asimismo, podran ver como se representan usualmente en forma grafica cada uno de estos resultados y como generar dichos graficos en Mathematica.

El archivo/notebook de Mathematica podrán descargarlo (tanto en formato Mathematica como en formato PDF, para quienes no disponen del software) haciendo click derecho aquí y descomprimiendo el archivo .zip que descargaran.

Espero que les sirva.

Office hours: 1 hora adicional por semana para hacer consultas y/o comentarios

Hola a todes!

Quiero comentarles que finalmente logré acomodar mis horarios para poder ofrecerles, tal y como había mencionado al inicio del curso, 1 hora más por semana de mi tiempo para que puedan hacer consultas, evacuar dudas que hubieran surgido o bien para hacer comentarios acerca del desarrollo del curso.

A fin de garantizar 1 hora por semana y a la vez acomodar a quienes quieran aprovecharlo y no puedan en un único horario, les propongo lo siguiente. Yo voy a hacerme disponible los dias miércoles y viernes a las 16h30 y hasta las 17, horario en el que comienza nuestro curso. Quienes quieran aprovechar de estas office hours que les ofrezco, solo tienen que conectarse a las 16h30 al aula virtual del curso, yo los estaré esperando.

Espero que este ofrecimiento les resulte útil y que muches de ustedes puedan aprovecharlo.

Acerca del empuje y de cómo funcionan las alas de avión

“La explicación más extendida del empuje es común, rápida, suena lógica y nos da la respuesta correcta, al tiempo que introduce conceptos erróneos, emplea un argumento físico sin sentido y evoca engañosamente la ecuación de Bernoulli”,

afirma Holger Babinsky (Cambridge Univ.) en su artículo “How do wings work?”, aparecido en 2003 en Physics Education. Los invito a leerlo para saber cómo un sencillo análisis de los gradientes de presión y de la curvatura de las líneas de corriente (como discutimos durante la última teórica) provee la explicación física más precisa y completa. Encontrarán el artículo siguiendo este link.

Espero que les sirva.

Acerca de Heinrich Blasius

Ayer en clase discutimos (solo) una contribucion importante que Blasius realizó en dinámica de fluidos. Para aquellos que deseen conocer un poco más acerca de la magnitud del aporte de Blasius en esta y otras tematicas, les dejo aquí un paper publicado en Experiments in Fluids en 2003, en ocasión del 120° aniversario de su nacimiento.

Espero que les sirva.

Anton Flettner y la fuerza de Magnus aplicada a la navegación

Como les comenté en claseAnton Flettner fue el primero en concebir y construir una embarcación capaz de propulsarse explotando el resultado que obtuvimos hoy para la fuerza sobre un obstáculo cuyo contorno tiene una circulación atrapada y que enfrenta un flujo uniforme (fuerza o efecto Magnus).

La idea de Flettner fué construir una embarcación sin velas ni motores, en la cuál un cilindro vertical instalado sobre la cubierta se hiciese rotar a velocidad y dirección controladas de forma de obtener una fuerza sobre el navío en la dirección deseada. A dicho sistema se lo denominó rotor Flettner. Concretamente Flettner utilizó una embarcación preexistente (llamada Baden-Baden) la cuál hizo modificar y rebautizó como Buckau. Este sistema de propulsión demostró fehacientemente su potencialidad como medio de propulsión eólica para embarcaciones cuando el Buckau logró cruzar el océano Atlántico en 1926. Les dejo una foto del Buckau (ex Baden-Baden) junto a estas líneas.

En la actualidad este tipo de propulsión es utilizada como alternativa a turbinas diesel, buscando explotar los recursos naturales renovables (como el viento) para incluso generar la energía con la cuál se hacen rotar los cilindros. Les dejo como ejemplo un video en el cuál se muestra uno de estos barcos modernos de tipo Flettner.

La embarcación que se ve en el video es el denominado E-Ship que la sociedad de construcciones eólicas Enercon (alemana) encomendó construir en 2007 a los astilleros Lindenau Werft de Kiel; comenzó sus operaciones en agosto de 2010 y continúa siendo utilizado en la actualidad. Se trata de un carguero de 130 m de eslora (largo) y 22.5 de manga (ancho), con capacidad para transportar entre 80 y 120 toneladas. Está equipado de 4 rotores Flettner (4 cilindros rotantes) de 27 metros de altura y 4 metros de diámetro, montados en las esquinas de la cubierta.
Espero que les sea util.

Método de Milne-Thomson (repaso de matematica)

Hola! Alguien me consultó por el post acerca del cálculo del potencial complejo; en particular, cómo calculamos el potencial complejo cuando sólo conocemos su parte imaginaria (la función corriente), o bien sólo la función potencial de velocidad.

Matemáticamente, el problema se traduce en saber cómo calcular funciones holomorfas a partir de (sólo) sus componentes real o imaginaria. Una forma de hacerlo es a través de una estrategia simple conocida como ‘método de Milne-Thomson’ (les suena?).

Si bien en general este método se visita en los cursos de variable compleja (aunque no se le dé nombre y apellido), les dejo un apunte breve que escribí a modo de repaso, con un ejemplo aplicado a un flujo que vimos en teóricas.

El documento podrán descargarlo haciendo click aquí.

Espero que les resulte útil.

Flujos potenciales en el laboratorio

Me parece interesante comentarles brevemente en este post cómo es posible obtener y visualizar flujos potenciales bidimensionales (como los que discutimos en clase hoy) en el laboratorio.

Un montaje experimental comúnmente utilizado para producir y estudiar flujos potenciales bidimensionales es la celda de Hele-Shaw, introducida hace más de 100 años por Henry Hele-Shaw. Una celda de Hele-Shaw consiste esencialmente en el flujo de un líquido viscoso entre dos placas plano-paralelas ligeramente separadas entre sí.

La figura muestra un esquema simple de una celda de Hele-Shaw, ilustrando el flujo en torno de un obstáculo; un arreglo lineal para la inyección de colorante (como trazador) y algunas líneas de corriente a modo de visualización. El flujo dentro de la celda, laminar y paralelo, se conoce como flujo de Poiseuille plano y será objeto de estudio en la segunda mitad de la materia (en el marco de la guía de flujos viscosos).

Una propiedad paradójica de la celda de Hele-Shaw es que, a pesar de que el flujo es viscoso, las líneas de corriente bidimensionales que se observan tienen las propiedades de un flujo potencial. No se alarmen: más adelante en el curso veremos en detalle cómo probar esta afirmación.

Les dejo además un video que muestra el dispositivo experimental de Hele-Shaw y su operación. El obstáculo empleado (un cilindro en este caso) es ubicado en el pequeño espacio entre dos placas de vidrio dispuestas verticalmente. Un fluido viscoso y transparente se carga en un reservorio sobre la celda y se lo deja fluir a través de ella bajo la acción de la gravedad. El dispositivo cuenta además (como es usual) con un arreglo lineal de inyectores equiespaciados por donde se hace ingresar un fluido coloreado de iguales características (viscosidad, densidad, etc.). El reservorio se mantiene continuamente alimentado con fluido transparente y la visualización comienza haciendo ingresar el trazador al sistema. Para incrementar el contraste de las líneas observadas, se suele emplear un trazador fluorescente y trabajar a oscuras iluminando únicamente el flujo en la celda. Pueden visualizar el video haciendo click sobre la imagen asociada.

Finalmente, les dejo dos videos más: dos visualizaciones experimentales de las líneas de corriente de un flujo potencial bidimensional uniforme que enfrenta (a) un obstáculo cilíndrico y (b) un perfil alar; ambas obtenidas con la celda de Hele-Shaw mostrada en el primer video.

Espero que les sea util.

Hacer click sobre estas imágenes para ver los videos asociados.

Calculo del potencial complejo

Según les mencioné en la clase de hoy, les dejo en este post el link a una notebook de Python en Colab que les prepare en la que les describo cómo calcular la función corriente, así como el potencial complejo, en un caso con una fuente de caudal y un vortice, complementando lo que vimos en la clase practica de ayer. Encontrarán además dos cosas adicionales respecto de lo visto en clase: (a) la forma de las líneas de corriente para el caso general, y (b) un caso en el cuál se observa en la naturaleza este tipo de flujo.

Este caso es de interés por dos razones. Por un lado, el ejemplo sirve como ilustración del método general para el cálculo del potencial complejo de un flujo singular (i.e., que incluye singularidades). Por el otro, vemos que calculamos, como les comente en clase, el potencial complejo para los dos ‘ladrillos fundamentales’ de los que están constituidos todos los flujos que consideraremos en esta práctica: una fuente isótropa de caudal constante y un vórtice (dos casos límite que surgen de lo visto en clase y de lo expuesto en este documento).

Cualquier flujo que resulte combinación de ellos (p.ej., dipolos) podrá calcularse fácilmente a partir del resultado que vimos en clase (y que les describo en detalle en el documento que les adjunto) dado que las ecuaciones para la función potencial y la función corriente responden al principio de superposición.

Espero que les sirva.