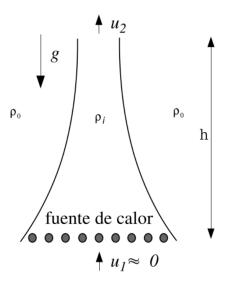
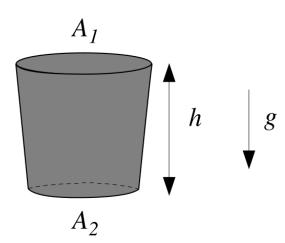

Práctica 2: Leyes de Conservación

Problema 1. Un líquido incompresible de densidad ρ_0 fluye de manera estacionaria por el interior de un conducto de longitud finita y sección variable. En la figura, p_1 , A_1 y h_1 denotan la presión, el área y la altura a la que se encuentra uno de los extremos del conducto, mientras que p_2 , A_2 y h_2 corresponden al otro extremo. Los extremos 1 y 2 están localizados en regiones del conducto en donde la sección es razonablemente uniforme, así que las velocidades v_1 y v_2 pueden considerarse aproximadamente uniformes sobre toda la sección y paralelas al conducto.

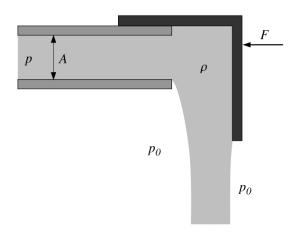

- (i) Aplicando el teorema de Bernoulli que corresponda, y suponiendo que $A_1 > A_2$, obtenga una expresión para el caudal en función de los datos dados en los extremos del tubo.
- (ii) ¿Cuál es la condición para que exista flujo?
- (iii) Observe que a partir de lo hallado en (i) no existe ninguna restricción acerca del sentido de movimiento (este es impuesto por las condiciones iniciales, y los detalles constituyen un problema no estacionario). Suponga que el movimiento se da desde el extremo 1 al 2. ¿Puede haber flujo aún cuando $h_1 < h_2$?
- (iv) En el caso en que $A_1 = A_2$, ¿cuál es la condición para que haya flujo estacionario?

Problema 2. Modelo simplificado de chimenea


Un modelo simplificado de chimenea supone que en el interior de la misma hay un fluido de densidad ρ_i que es calentado por una fuente de calor situada en la parte inferior, rodeada exteriormente por una atmósfera de densidad ρ_0 , con $\rho_0 > \rho_i$. Para una chimenea idealizada sin fricción, encuentre la velocidad de salida v_2 en términos de ρ_0 , ρ_i , g y h suponiendo que el flujo es estacionario.

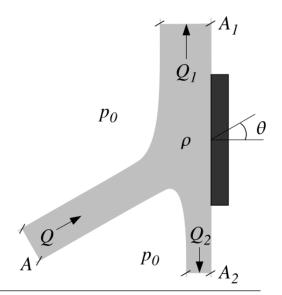
¿Cuáles son a su parecer las aproximaciones del modelo que menos se ajustan a un caso real?

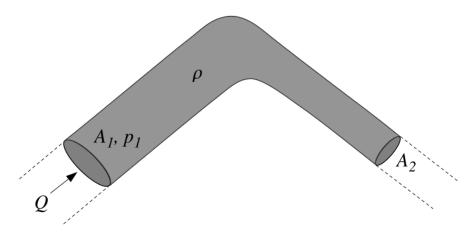
¿Para qué tipo de chimeneas espera que este modelo pueda dar una representación aceptable?


Problema 3. Desagote de un embudo - Clepsidra Un recipiente con forma de embudo y simetría axial contiene un líquido incompresible.

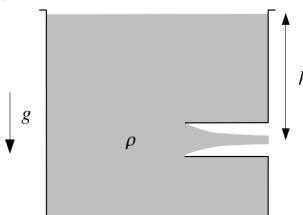
A t=0 se abre la tapa inferior dejándoselo fluir, mientras que al mismo tiempo se va agregando el mismo líquido por la tapa superior, de tal manera de mantener constante el nivel. Cuando la inclinación de las paredes respecto de la vertical es pequeña, se puede obtener una solución aproximada del problema despreciando las componentes horizontales de la velocidad. Suponga que la variación de la sección del embudo es lineal, de la forma $A(z)=(1+\epsilon z/h)A_2$ ($\epsilon\ll 1$).

- (i) ¿Cuál es la velocidad de salida en la tapa inferior como función del tiempo?
- (ii) ¿Se llega a un régimen estacionario?


Problema 4. Un gas ideal de densidad ρ se escapa adiabáticamente a través de un pequeño agujero en un recipiente. Determine la velocidad de salida si la presión es p en el interior del recipiente y p_0 en el exterior. Justifique por qué se puede asumir que el sistema se encuentra en estado estacionario.

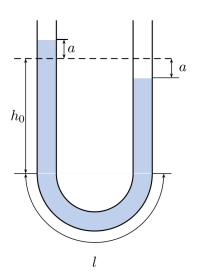

Problema 5. Si se interrumpe el extremo de un tubo muy largo con una tapa deslizante como se muestra en la figura, determine el caudal Q del líquido ideal e incompresible con los datos indicados, donde F es la fuerza horizontal que se aplica para evitar que deslice la tapa.

Problema 6. Fuerza ejercida por un jet sobre una placa plana Un chorro de líquido incompresible de caudal Q y sección A incide sobre una placa plana. El fluido puede ser considerado ideal y no actúan fuerzas externas. Tenga en cuenta que la presión del fluido es la atmosférica en zonas suficientemente alejadas de la interacción con la placa.

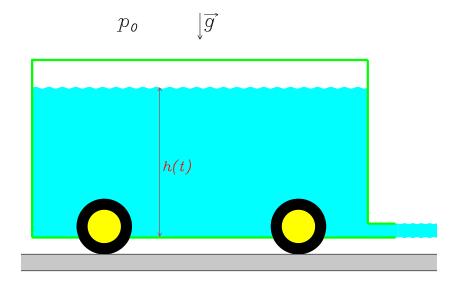

- (i) ¿Qué fuerza debe aplicarse sobre la placa para que ésta permanezca en equilibrio?
- (ii) Hallar Q_1 y Q_2 como función de Q y de θ .
- (iii) Calcule para $\theta=30^\circ,\,Q=10~\rm{cm}^3/s,\,A=100~\rm{cm}^2$ y $\rho=1~\rm{g/cm}^3$

Problema 7. Tubería en codo Determine la fuerza que el líquido, considerado ideal, ejerce sobre una cañería muy extensa doblada en ángulo recto como se indica en la figura. Considere que la cañería se encuentra sobre una superficie horizontal. ¿Por qué se necesita la hipótesis de cañería muy extensa?

Problema 8. Embocadura de Borda De un tanque como el de la figura fluye un líquido incompresible hacia el exterior a través de una embocadura situada a una profundidad h respecto de la superficie



La embocadura penetra profundamente en el interior del tanque (este tipo de embocadura es la llamada de Borda). El tanque es lo suficientemente grande como para que pueda considerarse $v\approx 0$ en la superficie libre. Como consecuencia, prácticamente tampoco se registra movimiento en las paredes laterales y entonces en esa zona la presión es la hidrostática. Se asume presión atmosférica en el exterior.


- (i) Muestre que la velocidad de salida es la dada por la fórmula de Torricelli $v_s = \sqrt{2gh}$.
- (ii) Aplicando el teorema de la cantidad de movimiento estime la relación entre la sección final del chorro ("vena contracta") y el área de la embocadura. Este coeficiente se llama coeficiente de contracción.

Problema 9. Determine la ecuación de movimiento de las superficies de las columnas de líquido de la figura, y resuelva para las condiciones iniciales indicadas, suponiendo nulo el campo de velocidades inicial del líquido.

¿Cómo se modifican sus resultados si inicialmente se tiene una velocidad v_0 no nula?

Problema 10. Se tiene un depósito móvil abierto superiormente con un líquido de densidad ρ en su interior el cual a t=0 tiene una profundidad h_0 . El depósito se mueve hacia la izquierda a velocidad

constante (existe fricción entre las ruedas y el suelo) y deja escapar líquido por un orificio de sección $A_s \ll A$, siendo A el área de la base del depósito.

- (i) Asumiendo un régimen cuasiestacionario, encuentre la variación temporal del nivel del líquido en el depósito.
- (ii) Halle la fuerza de fricción entre las ruedas y el suelo en función del tiempo.