ESTRUCTURA DE LA MATERIA 2

Primer Cuatrimestre de 2021

Guía 8: Segunda Cuantización. Modelo de Hubbard.

1. Los operadores de creación y destrucción fermiónicos, cumplen las relaciones de anticonmutación

$$\left\{\hat{c}_{i\sigma}, \hat{c}_{i\sigma'}^{\dagger}\right\} = \delta_{ij}\delta_{\sigma\sigma'}; \quad \left\{\hat{c}_{i\sigma}^{\dagger}, \hat{c}_{i\sigma'}^{\dagger}\right\} = 0; \quad \left\{\hat{c}_{i\sigma}, \hat{c}_{i\sigma'}\right\} = 0.$$

- a) Muestre que $\hat{c}_{i\sigma}^{\dagger}|i\sigma\rangle = 0$ donde el ket $|i\sigma\rangle$ corresponde a un espín σ en el sitio i.
- b) Dado el estado $|\Psi\rangle = \hat{c}_{\mathbf{k}_1}^{\dagger} \hat{c}_{\mathbf{k}_2}^{\dagger} |0\rangle$, muestre explícitamente que la función de onda $\Psi(\mathbf{r}_1, \mathbf{r}_2)$ es antisimétrica ante el intercambio $1 \leftrightarrow 2$.
- 2. En primera cuantización, los operadores de espín del electrón esta representados por las matrices de Pauli:

$$\mathbf{s} = \frac{\hbar}{2} \sigma, \ \sigma = \left\{ \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right\}.$$

El operador en segunda cuantización se obtiene evaluando los elementos de matriz en índices de espín, para obtener:

$$\mathbf{s} = \frac{\hbar}{2} \sum_{\mu\mu'} \langle \mu | \mathbf{s} | \mu' \rangle \, \hat{c}_{\mu}^{\dagger} \hat{c}_{\mu'} = \frac{\hbar}{2} \sum_{\mu\mu'} \langle \mu | (\sigma^x, \sigma^y, \sigma^z) | \mu' \rangle \, \hat{c}_{\mu}^{\dagger} \hat{c}_{\mu'},$$

con componentes

$$s^{x} = \frac{\hbar}{2} \left(\hat{c}_{\downarrow}^{\dagger} \hat{c}_{\uparrow} + \hat{c}_{\uparrow}^{\dagger} \hat{c}_{\downarrow} \right); \ s^{y} = i \frac{\hbar}{2} \left(\hat{c}_{\downarrow}^{\dagger} \hat{c}_{\uparrow} - \hat{c}_{\uparrow}^{\dagger} \hat{c}_{\downarrow} \right); \ s^{z} = \frac{\hbar}{2} \left(\hat{c}_{\uparrow}^{\dagger} \hat{c}_{\uparrow} - \hat{c}_{\downarrow}^{\dagger} \hat{c}_{\downarrow} \right).$$

Usando las propiedades de conmutación de los operadores de creación y destrucción, compruebe que los operadores de espín definidos satisfagan las relaciones de conmutación de momento angular.

3. Para ganar intuición en la física del modelo de Hubbard, consideremos solo un sitio

$$H = U \hat{n}_{\uparrow} \hat{n}_{\downarrow}$$
.

En este caso sencillo el modelo se resuelve fácilmente. Tendremos cuatro autoestados $\{|0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle\}$ con autoenergías 0, 0, 0, U respectivamente. La función de partición gran canónica es

$$Z = \sum_{\alpha} \langle \alpha | e^{-\beta(H - \mu N)} | \alpha \rangle = 1 + 2e^{\beta \mu} + 2e^{2\beta \mu - \beta U}$$

donde μ es el potencial químico, que controla el llenado. La energía, por otro lado es

$$E = \langle H \rangle = Z^{-1} \sum_{\alpha} \langle \alpha | He^{-\beta(H-\mu N)} | \alpha \rangle = \left(1 + 2e^{\beta\mu} + e^{2\beta\mu - \beta U} \right) Ue^{2\beta\mu - \beta U}.$$

- a) Encuentre la expresión para la ocupación $\rho = \langle N \rangle$.
- b) Realice un gráfico de ρ vs. μ para U=4 y T=2 (trabaje con $k_B\equiv 1$). ¿Cómo cambia la ocupación en función del potencial químico a esta temperatura? ¿Hay alguna característica destacada?
- c) Repita los pasos del ítem anterior con U=4 y T=0.5. ¿Cambia algo? Explore otras temperaturas cercanas.
- d) ¿Qué característica física del espectro refleja el comportamiento observado en el potencial químico? Este comportamiento es un indicador usual del "aislante de Mott".
- e) Grafique el calor específico d $E/\mathrm{d}T$. ¿Qué observa?
- f) Veamos ahora las propiedades magnéticas. El momento magnético local, se define como

$$\langle m^2 \rangle = \langle (\hat{n}_{\uparrow} - \hat{n}_{\downarrow})^2 \rangle.$$

Pruebe que el mismo se puede escribir como $\langle m^2 \rangle = \langle \hat{n}_{\uparrow} + \hat{n}_{\downarrow} \rangle - 2d$, donde $d = \langle \hat{n}_{\uparrow} \hat{n}_{\downarrow} \rangle$ es la "doble ocupación".

- g) A llenado mitad, con T=2, grafique el momento magnético local en función de U. Explique físicamente por qué $\langle m^2 \rangle = 1$ cuando U es grande. ¿Qué sucede con la doble ocupación?
- h) A llenado mitad, con U=4, grafique el momento magnético local en función de T. Explique físicamente por qué $\langle m^2 \rangle = 1/2$ cuanto T es grande.

4.

a) Demostrar que el Hamiltoniano de Hubbard

$$H = -t \sum_{\langle ij \rangle \sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{i\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

conmuta con los siguientes operadores

$$\hat{n}_{\uparrow} = \sum_{i} \hat{n}_{i\uparrow}; \ \hat{n}_{\downarrow} = \sum_{i} \hat{n}_{i\downarrow}; \ \hat{s}^{z} = \sum_{i} \hat{s}_{i}^{z}.$$

¿Qué puede decir del espín total?

- b) Calcular los autoestados y autoenergías para el caso de un **dímero**. Aproveche las simetrías demostradas y resuelva por bloques.
- c) Para el sector de dos partículas:
 - 1) ¿Cuánto vale el $\langle \hat{s}^z \rangle$ en el bloque con $\hat{n}_{\uparrow} = \hat{n}_{\downarrow} = 1$? Note que $\langle m^2 \rangle \propto \langle (\hat{s}^z)^2 \rangle$.
 - 2) Calcule la diferencia de energía entre los estados $|\uparrow,\uparrow\rangle$ y $|\downarrow,\downarrow\rangle$ y el estado de menor energía del mismo bloque que el ítem anterior.
 - 3) Analice el límite $U \gg t$. ¿Qué pasa con la función de onda del estado fundamental?