Estructura de la Materia 2

Clase 10 - Teoría

Docentes

Gustavo Grinblat, Andrea Barral, Franco Mayo, Alejandra Fernández

Departamento de Física, FCEN, UBA – Segundo Cuatrimestre, 2022

Web: <u>http://materias.df.uba.ar/edlm2a2022c2</u>

Energía de Fermi (niveles de Landau)

Estados de borde: Potencial de confinamiento

Encontramos estados de borde quirales, que se mueven en una única dirección en cada lado de la muestra. Son especiales porque son "inmunes" a impurezas. Un e⁻ en un estado quiral no puede ser redirigido en cualquier dirección a través de colisiones dado que todos los estados de borde se mueven en la misma dirección.

Estados de borde: Conductividad

En cada lado de la muestra los e⁻ se mueven en direcciones opuestas.

Imponemos $\Delta \mu \neq 0$ entre los bordes y calculamos la corriente: $\bar{J} = -\frac{e}{S} \sum_{\substack{Estados\\ocupados}} \frac{1}{\hbar} \nabla_{\bar{k}} \varepsilon_n(\bar{k}) \longrightarrow J_x = -\frac{e}{S} \sum_{\substack{Estados}} \frac{1}{\hbar} \nabla_{\bar{k}} \varepsilon_n(\bar{k}) \longrightarrow J_x = -\frac{e}{S} \sum_{\substack{Estad$ $v_{\chi}(\bar{k})=0$ $\oint_{J_y} = -\frac{e}{S} \sum_{Estados} v_y(\bar{k}) = \frac{e}{S} \sum_{n=1}^{\mathcal{W}} \sum_k \left(\frac{c}{eH}\right) \frac{dV}{dx} \bigg|_{x=x_k} = \frac{ev}{S} \sum_{x_L} \left(\frac{c}{eH}\right) \frac{dV}{dx} \bigg|_{x=x_k}$ ocupados $=\frac{ev}{S}\int \left(\frac{c}{eH}\right)\frac{dV}{dx}\left(\frac{L_y}{2\pi l_H^2}\right)dx = \frac{ev}{S}\left(\frac{c}{eH}\right)\left(\frac{eHL_y}{\hbar c}\right)\Delta\mu = \frac{1}{L_x}\frac{ev}{\hbar}\Delta\mu$ $\longrightarrow I_y = J_y L_x = \frac{ev}{h} eV_H \longrightarrow \rho_T = \frac{h}{e^2} \frac{1}{v}$ Como los estados que transportan corriente $\rightarrow \rho_L = 0$ en \hat{y} se mueven a lo largo de equipotenciales

 ξ Y si el llenado no es entero? En principio, un cambio infinitesimal en *H* elimina el llenado entero, ρ_T^{-1} deja de ser múltiplo entero de e^2/h , y ρ_L deja de ser nulo (existirán estados accesibles hacia los cuales los electrones podrán ser dispersados).

Influencia del desorden

El desorden destruye la simetría de traslación, rompiendo la degeneración en los niveles de Landau. Suponiendo que:

- La magnitud del potencial agregado por desorden es menor a la separación entre niveles de Landau $(|V_d| < \hbar \omega_c)$
- El potencial varía apreciablemente solo en distancias mucho mayores a l_H ($|\nabla V_d| \ll \hbar \omega_c / l_H$).
- → Los centros de las órbitas se mueven en líneas equipotenciales, con estados localizados (EL) alrededor de picos y mínimos de V_d , y estados extendidos (EE) en valles de V_d y en los bordes de la muestra.

Influencia del desorden

El desorden destruye la simetría de traslación, rompiendo la degeneración en los niveles de Landau. Suponiendo que:

- La magnitud del potencial agregado por desorden es menor a la separación entre niveles de Landau $(|V_d| < \hbar \omega_c)$
- El potencial varía apreciablemente solo en distancias mucho mayores a l_H ($|\nabla V_d| \ll \hbar \omega_c / l_H$).
- → Los centros de las órbitas se mueven en líneas equipotenciales, con estados localizados (EL) alrededor de picos y mínimos de V_d , y estados extendidos (EE) en valles de V_d y en los bordes de la muestra.

Influencia del desorden

Los EE se encuentran en torno al centro de cada banda definida por los NL y son los que transportan corriente de un extremo a otro de la muestra. Los EL llenan los intervalos de energía entre regiones de EE.

Como en determinados rangos de *H* solo cambia la ocupación de EL (que no contribuyen a la conductividad) y la población de EE permanece constante, aparecen mesetas en $\rho_T vs H$. Y, dado que cambios en la población de EE solo ocurren en intervalos muy reducidos de *H*, entre mesetas se observan saltos abruptos.

Como en una meseta los EE ocupados se encuentran lejos de ε_F , la ausencia de EE disponibles a energías cercanas anula ρ_L . Entre mesetas los e⁻ en EE sí pueden hacer *scattering*, produciendo picos en ρ_L .

Argumento de Laughlin

 $\Phi = \oint \bar{A}(\bar{r})d\bar{r}$ (Teorema de Stokes: La integral de línea del vector potencial alrededor del cilindro es igual al flujo que lo atraviesa) → Puedo incluir el flujo Φ a través del cilindro tomando: $\bar{A} = (0, Hx + \Phi/L_y)$ $\square \Phi$ $\mathcal{H} = \frac{\left(\bar{p} + \frac{e}{c}\bar{A}\right)^{2}}{2m} \longrightarrow \left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}} + \frac{1}{2m}\left(-i\hbar\frac{\partial}{\partial y} + \frac{e}{c}Hx + \frac{e}{c}\frac{\Phi}{L}\right)^{2}\right)\psi(\bar{r}) = \varepsilon\psi(\bar{r})$ $H \odot$ Resolviendo $x_k = x_k^{\Phi=0} - \frac{\Phi}{\Phi_0} \frac{hc}{eH_{\text{Im}}} = \frac{hcj}{eH_{\text{Im}}} - \frac{\Phi}{\Phi_0} \frac{hc}{eH_{\text{Im}}} = \frac{hc}{eH_{\text{Im}}} \left(j - \frac{\Phi}{\Phi_0} \right)$ Si se atraviesa $\Phi = \Phi_0$: $x_k^j \to x_k^{j-1}$ Se transfiere un e de un borde $p_T = \left(-\frac{\partial \Phi}{\partial t}\right)_L^{fem} = -\frac{\Phi_0}{T}\frac{\langle T \rangle}{\Lambda O} = -\frac{hc/e}{-ve} = \frac{h}{e^2}\frac{1}{v}$

Si hay desorden, los EL no son alterados por Φ puesto que el mismo puede removerse con una transformación de *gauge*. Para los EE esto solo puede hacerse si $\Phi = l\Phi_0, l \in \mathbb{Z}$, porque deben ser univaluados al dar una vuelta completa alrededor del anillo ($\Delta \phi = 2\pi \Phi/\Phi_0$). El espectro de \mathcal{H} queda entonces sin alterar cuando $\Phi = l\Phi_0, l \in \mathbb{Z}$. Los EL no cambian, y los EE se mapean sobre sí mismos.

Resumen

- Modelo semiclásico para la dinámica de e⁻ de Bloch
- Origen de la resistividad en materiales
- Electrones, huecos, y masa efectiva
- Comparación con el modelo de Drude
- Efecto Hall y Efecto Hall Cuántico
- Niveles de Landau en un gas bidimensional de e-
- Estados de borde y conductividad para ν entero
- Influencia del desorden
- Argumento de Laughlin e invariancia de gauge

