ESTRUCTURA DE LA MATERIA 2

Segundo cuatrimestre de 2024

Guía 8. Dinámica de redes. Propiedades térmicas

Dinámica de redes

- 1. Hallar la relación de dispersión de fonones para una cadena lineal monoatómica con interacción a primeros vecinos.
- 2. Considere una cadena lineal formada por iones de masa m_1 y m_2 , con interacciones a primeros vecinos C.
 - a) Muestre que la relación de dispersión es:

$$\omega^{2}(k) = \frac{C}{\mu} \left(1 \pm \sqrt{1 - 2\frac{\mu^{2}}{m_{1}m_{2}} \left[1 - \cos(ka) \right]} \right),$$

donde μ es la masa reducida.

- b) Encuentre la relación de amplitud u/v para las dos ramas de $\omega^2(k)$ para k en el borde de zona $(k = \frac{\pi}{a})$.
- c) Discuta la forma de la relación de dispersión y la naturaleza de los modos normales cuando $m_1 \gg m_2$.
- d) Compare la relación de dispersión con la de la cadena monoatómica cuando $m_1 \approx m_2$. ¿Qué sucede cuando son iguales?
- 3. Halle los modos normales de vibración de una cadena lineal monoatómica en la que las constantes de fuerza entre primeros vecinos son alternadamente $C_1 = C$ y $C_2 = 10C$ y la distancia entre primeros vecinos es a/2. Calcule $\omega(k)$ en k = 0 y $k = \pi/a$. Grafique la relación de dispersión en la primera zona de Brillouin.
- 4. Calcule la matriz dinámica para un cristal unidimensional con una base de tres átomos, A-B-A, de masas m_A y m_B . La cadena tiene constante de red a, y las posiciones de los átomos en la celda unidad son x(B) = 0, $x(A_1) = a/3$ y $x(A_2) = 2a/3$, e interactúan con constantes de fuerza C_{AB} y C_{AA} entre primeros vecinos respectivos.

Determine las frecuencias y los autovectores en k=0.

- 5. Suponga una red rectangular plana monoatómica con parámetros de red a y b. Las constantes de fuerza entre átomos son C_1 a primeros vecinos y C_2 a segundos vecinos, respectivamente.
 - a) Halle la matriz dinámica del sistema, para una dirección de k arbitraria en el plano.
 - b) Grafique la relación de dispersión en el siguiente recorrido de la primera zona de Brillouin: $\Gamma \to X \to S \to \Gamma \to Y \to S$, donde $\Gamma = (0,0), X = (\pi/a,0), Y = (0,\pi/b), S = (\pi/a,\pi/b).$
 - c) Considere el límite para $ka \approx kb \ll 1$ e interprete lo obtenido.
- 6. Un cristal bidimensional de celda unidad rectangular (a=a, b=2a) tiene dos átomos (A y B, masas m_A y m_B) por celda unidad, ubicados en posiciones (0,0) (el A) y (0, 1/2) (el B). Los átomos interactúan entre sí a través de constantes de fuerza C_{AA} , C_{BB} y C_{AB} , a primeros vecinos, entre los átomos AA, BB y AB respectivamente, y constantes C_4

entre átomos AB a segundos vecinos. Calcule la matriz dinámica de este problema para vectores de onda k en la dirección del lado b. Halle y graficque las curvas de dispersión correspondientes en esa dirección.

Ayuda: en esa dirección se separan los modos longitudinales de los transversales.

- 7. Considere un cristal cuya red es del tipo panal de abejas.
 - a) ¿Cuántas ramas fonónicas acústicas y cuántas ópticas existen?. Dibuje cualitativamente las curvas de dispersión en alguna dirección del espacio recíproco.
 - b) Tomando constantes de fuerza de valor C a primeros vecinos, encuentre las curvas de dispersión para la dirección $k=\alpha$ a* correspondientes a modos longitudinales y transversales. ¿Cómo se explica que los modos transversales no dependan del valor de k? ¿Qué suposición habría que cambiar para que esto no fuera así?
 - c) Grafique cualitativamente la densidad de estados restringida a esta dirección. En base a esto, dibujar cualitativamente C_v vs T.
- 8. Calcule las dispersiones de los modos longitudinales y transversales en la dirección (1,0,0) de una red FCC monoatómica con interacciones a primeros vecinos. Calcular la velocidad del sonido para estos modos.

Propiedades térmicas

- 9. A partir de la relación de dispersión de una cadena lineal monoatómica con interacciones a primeros vecinos, encuentre la densidad de estados de fonones o densidad de modos normales.
- 10. Suponiendo que la rama óptica en un sólido tridimensional tiene, cerca de k = 0, la forma $\omega(k) = \omega_0 Ak^2$, muestre que la densidad de estados correspondiente a esa porción de la banda óptica es:

$$g(\omega) = \begin{cases} \left(\frac{L}{2\pi}\right)^3 2\pi A^{-3/2} (\omega_0 - \omega)^{\frac{1}{2}} & \omega \le \omega_0 \\ 0 & \omega \ge \omega_0 \end{cases}$$

- 11. A bajas temperaturas el calor específico según el modelo de Debye tiene un comportamiento como T^3 .
 - a) ¿Cómo se modifica esta dependencia si se considera un sólido unidimensional? ¿Y uno bidimensional?
 - b) Imaginar un cristal formado por planos atómicos débilmente acoplados entre sí. ¿Qué forma tendrá el calor específico para temperatura baja?
- 12. Empleando la aproximación de Debye para el cálculo del calor específico en una cadena monoatómica ¿se sobreestima o se subestima este valor (comparado con el real) a altas temperaturas?
- 13. Un cristal puede ser descripto por el modelo de Debye-Einstein con frecuencia de Debye ω_D y frecuencia de Einstein ω_E , $\omega_E \gg \omega_D$. Hacer un gráfico cualitativo de la densidad de estados fonónica $G(\omega)$, indicando claramente la condición de normalización. Hacer otro del calor específico c_V en función de la temperatura, especificando su dependencia para T bajas y altas. Considere el problema en 1, 2 y 3 dimensiones.