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Transition Probabilities and Selection Rules

1. Correspondence between Classical and Quantum Mechanical Transition

Rates

According to the correspondence principle between classical and quantum mechanics (e.g.
Landau and Lifshitz, Quantum Mechanics, §48), if A is a classically time-varying quantity,
then there is a correspondence between its Fourier components Aω and the matrix elements
of the quantum mechanical operator between two energy eigenstates ψL = φL(x)e−iωLt and
ψU = φU (x)e−iωU t differing in energy by ω = ωU − ωL

Aω → 〈φL|Aω|φU 〉 . (1.1)

Equation (1.1) is used to obtain the quantum mechanical transition probabilities (2.11),
(3.5), and (4.3) given below.

2. Electric Dipole

Start from the classical formula for electric dipole radiation

dE

dt
=

2

3c3
d̈2 (2.1)

where

d ≡
∑

charges q

qr (2.2)

is the electric dipole moment. The Fourier expansion of the dipole moment d is

d =
∑

ω

dωe
iωt (2.3)

so the Fourier expansion of d̈ is

d̈ =
∑

ω

−ω2dωe
iωt (2.4)

and the Fourier expansion of d̈2 is

d̈2 =
∑

ω

−ω2dωe
iωt .

∑

ω′

−ω′2dω′eiω
′t . (2.5)

The thing which is really of interest is the dipole radiation rate averaged over time, or
averaged over a period if the motion is periodic. Averaged over time, the periodic terms
in equation (2.5) disappear, leaving only the constant terms, which are those satisfying
ω′ = −ω:

d̈2 =
∑

ω

ω4dω .d−ω = 2
∑

ω>0

ω4dω .d−ω . (2.6)

Since the dipole moment d is real, it satisfies

d−ω = d∗

ω . (2.7)
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Hence equation (2.6) reduces to

d̈2 = 2
∑

ω>0

ω4|dω|
2 . (2.8)

Thus equation (2.1) for the classical dipole radiation rate, averaged over time, becomes

dE

dt
=

∑

ω>0

4ω4

3c3
|dω|

2 . (2.9)

To make the transition to quantum mechanics, according to the general prescription (3.1),
the Fourier coefficient dω must be replaced by the matrix element 〈φL|d|φU 〉, where φU and
φL represent initial (Upper) and final (Lower) spatial wave functions differing in energy by
ωU − ωL = ω. The quantum mechanical equivalent of equation (2.9) is therefore

dE

dt
=

∑

L

4ω4

3c3
|〈φL|d|φU 〉|

2 . (2.10)

Equation (2.10) gives the mean energy loss per unit time by electric dipole transitions out
of an initial state φU to a set of final states φL. The spontaneous transition probability, or
Einstein A coefficient, or simply A-value, for electric dipole transitions is

AUL(electric dipole) =
∑

L

4ω3

3c3~
|〈φL|d|φU 〉|

2 , (2.11)

which is obtained by dividing the energy loss rate (2.10) by the transition energy ~ω.
Note that the spontaneous transition probability is of order α3 (the fine-structure constant
1/137 cubed) in atomic units e = me = ~. The probability depends on nuclear charge Z
approximately as AUL ∼ Z4, since ω ∼ Z2 and d ∼ r ∼ Z−1.

For a single electron, the electric dipole moment is

d = −er . (2.12)

The radial vector operator r can be written as the product r = rr̂ of the radial operator r
and the dipole operator r̂, which is the unit vector in the r direction. The matrix elements
of the dipole operator r̂ are given in the notes on Angular Momentum. From these matrix
elements follow the electric dipole selection rules for a single electron:

(1) ∆L = ±1, ∆M = 0,±1;
(2) ∆S = 0, ∆MS = 0.

The second rule follows because the radial operator acts only on the spatial part of the wave
function, not the spin. The first rule implies that parity must change, which is also evident
from the fact that r has odd parity (it changes sign under coordinate inversion). These
selection rules reflect the fact that electric dipole photons have unit angular momentum and
odd parity.

For a system of electrons, which all have the same charge −e, the electric dipole moment
is

d = −e
∑

electrons

r . (2.13)
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Since the electric dipole operator (2.13) is the sum of single electron operators, the selection
rule follows that only one electron jumps in an electric dipole transition (for two electrons
to jump, there would have to be a product of two operators). Since the dipole operator
again has odd parity, again the parity must change in an electric dipole transition. And
again, since the dipole operator acts only on the spatial part of the wave function, spin is
conserved. The other rules for change in the angular momentum are easiest to infer from the
fact that the departing electric dipole photon has unit angular momentum. The selection
rules for electric dipole radiation from many electron atoms are, then:

(1) Only one electron changes its nl state;
(2) Parity must change;
(3) ∆J = 0,±1;
(4) ∆MJ = 0,±1;
(5) J = 0 ↔ 0 is not allowed;
(6) ∆L = 0,±1;
(7) L = 0 ↔ 0 is not allowed;
(8) ∆S = 0;

where J ≡ L+S is the total orbital plus spin angular momentum. The above rules are valid
insofar as LS coupling is obeyed (i.e. L and S are good quantum numbers), which is true to
the extent that the electrons are nonrelativistic. If LS coupling is violated, then terms may
contain admixtures of different L’s and S’s, and electric dipole transitions 1-8 may occur
through these admixtures. If terms are designated by their dominant LS components, then
rules 1 and 6-8 may appear to break down because of transitions occurring through non-
dominant components. However, the electric dipole selection rules 2-5 remain inviolate,
even when LS coupling is a poor approximation, since they follow from the assertion that
the departing photon has unit angular momentum and odd parity — it is an electric dipole
photon. In astronomy and space science, special attention attaches to transitions in which
only rule 8, ∆S = 0, is violated. Such transitions are called semi-forbidden. Otherwise,
all transitions violating any of the electric dipole selection rules are called forbidden. Semi-
forbidden transitions are electric dipole transitions, and the violation of the ∆S = 0 rules
occurs through configuration mixing caused by relativistic effects. For example, the C III]
1909 Å line.

3. Magnetic Dipole

Magnetic dipole and electric quadrupole transition probabilities can be derived in a sim-
ilar way from the classical formulae. Generally, one only considers these transition proba-
bilities when the electric dipole transition probability vanishes, that is, for forbidden lines.
At the low density of interplanetary or interstellar space, forbidden lines arising from tran-
sitions within the ground electronic configurations of multi-electron atoms, which are all
parity forbidden, are of great importance. At the high densities of laboratory vacua such
lines are collisionally deexcited, but in space collisions are so infrequent that even forbidden
lines have time to radiate. The classical magnetic dipole radiation rate is

dE

dt
=

2

3c3
µ̈2 (3.1)
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where

µ ≡
1

2c

∑

charges q

qr × v (3.2)

is the magnetic dipole moment. The magnetic dipole transition probability is then

AUL(magnetic dipole) =
∑

L

4ω3

3c3~
|〈φL|µ|φU 〉|

2 . (3.3)

The magnetic dipole transition probability is of order Z6α5 in atomic units, down by a
factor Z2α2 from the electric dipole probability.

For a system of nonrelativistic electrons, the magnetic moment µ is

µ =
−e

2mec
(L + 2S) . (3.4)

The minus sign in equation (3.4) is because electrons have a negative charge −e, and I’ve
added in the spin contribution S to the magnetic moment. Classically the spin S is absent,
but it has to be included quantum mechanically. The factor of 2 in front of S comes
from the nonrelativistic limit of the Dirac equation, which is the relativistic equivalent of
Schrödinger’s equation for spin 1

2
particles (see the notes on Spin in Atoms). Bunging (3.4)

into (3.3) gives the magnetic dipole transition probability

AUL(magnetic dipole) =
∑

L

e2ω3

3m2
ec

5~
|〈φL|L + 2S|φU 〉|

2 (3.5)

(don’t confuse L for Lower with L for angular momentum).
The selection rules for magnetic dipole transitions follow from equation (3.5): only transi-

tions between states in which the matrix elements of either L or S are nonzero are magnetic-
dipole allowed. The matrix elements of L, which are also those of S, are given in the notes
on Angular Momentum. Since L and S both have even parity (they remain unchanged
under coordinate inversion), the wave functions φL and φU must have the same parity.
Since L and S only act on the angular part of the wave function, not the radial part, the n
quantum numbers are unchanged. Since L2 commutes with L and S, the magnitude of the
total orbital angular momentum is unchanged. Likewise since S2 commutes with L and S,
the magnitude of the total spin angular momentum is unchanged. The remaining selection
rules follow most straightforwardly from the requirement that the departing photon has
unit angular momentum. The magnetic dipole selection rules are, then:

(1) No change in electronic configuration;
(2) Parity is unchanged;
(3) ∆J = 0, ±1;
(4) ∆MJ = 0, ±1;
(5) ∆J = 0 together with ∆MJ = 0 is not allowed; in particular, J = 0 ↔ 0 is not

allowed;
(6) ∆L = 0;
(7) ∆S = 0.
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4. Electric Quadrupole

The classical electric quadrupole radiation rate is

dE

dt
=

1

180c5
...
D

2
(4.1)

where
...
D

2
means

...
Dij

...
Dij (implicit summation over i, j = 1, 2, 3), and

Dij ≡
∑

charges q

qr2(3r̂ir̂j − δij) (4.2)

is the (3-dimensional) electric quadrupole moment tensor. The electric quadrupole transi-
tion probability is then

AUL(electric quadrupole) =
∑

L

ω5

90c5~
|〈φL|Dij |φU 〉|

2 . (4.3)

which is of order Z6α5 in atomic units, the same as the magnetic dipole transition proba-
bility.

You can check that, in a single electron atom, the matrix elements are nonzero only
for ∆L = 2, ∆M = 0,±1,±2. Parity is conserved, since Dij has even parity, and spin is
conserved, because Dij acts only on spatial coordinates. These rules reflect the fact that the
emitted electric quadrupole photon has angular momentum 2 and even parity. The electric
quadrupole selection rules are:

(1) Only one electron changes its nl state;
(2) Parity is unchanged;
(3) ∆J = 0,±1,±2;
(4) ∆MJ = 0,±1,±2;
(5) J = 0 ↔ 0, 0 ↔ 1, 1/2 ↔ 1/2 are not allowed;
(6) ∆L = 0,±1,±2;
(7) L = 0 ↔ 0, 0 ↔ 1 are not allowed;
(8) ∆S = 0.

5. Two-Photon Transitions

Since photons must have an angular momentum of at least one, the selection rule

J = 0 ↔ 0 is not allowed (5.1)

is absolute. Furthermore, in H-like ions, the selection rule

L = 0 ↔ 0 is not allowed (5.2)

is also absolute since there is no violation of LS coupling for single electrons. Thus for
example the 1s2 − 1s2s 1S0 transition in He-like ions, and the 1s − 2s transition in H-like
ions, are absolutely forbidden. However, the 2s levels of both He-like and H-like ions can
decay by the emission of two photons, and in fact two-photon emission is the dominant
mode of radiative decay from these levels.

Classically, two-photon emission is represented by emission of two photons in quick suc-
cession. If P is the classical probability per unit time of emission of a photon, then the
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probability of emitting two photons in a time ∆t is the probability of emitting a photon in
a time t, times the probability of emitting a photon in a time ∆t − t, integrated over all
times t from zero to ∆t:

P 2

∫ ∆t

0

t(∆t− t) dt =
1

6
P 2∆t2 . (5.3)

The rate per unit time for two-photon emission is then 1/∆t of equation (5.1), which is

1

6
P 2∆t (5.4)

which tends to zero as ∆t→ 0. Equation (5.1) shows that the rate for simultaneous emission
of two photons vanishes in the classical limit. In quantum mechanics, however, Heisenberg’s
uncertainty principle prevents ∆t from being specified more accurately than ∆t∆E ∼ ~.
Thus the two-photon emission rate is finite in quantum mechanics. The most probable case
is the emission of two electric dipole photons. With ∆t ∼ ~/∆E ∼ 1/ω, the two-photon
rate is approximately P 2

dipole/ω. Since in atomic units Pdipole ∼ Z4α3 and ω ∼ Z2, the two

photon emission probability for 1s− 2s is of order Z6α6 in atomic units, down by a factor
Z2α3 from single allowed electric dipole photon emission probabilities. A more detailed
analysis yields, for the probability dA(2-photon) of spontaneous emission of two photons,
with one photon in an angular frequency interval dω1:

dAUL(2-photon) =
∑

L

(

4ω3
1

3c3~

)(

4ω3
2

3c3~

)

∣

∣

∣

∣

∣

∑

I

1

ωIU + ω1
〈φL|d2|φI〉〈φI |d1|φU 〉 + (1 ↔ 2)

∣

∣

∣

∣

∣

2
dω1

2π

(5.5)
where the summation is over all intermediate states I. If the upper state is 2s, the interme-
diate states I must be p-states, by the dipole selection rules: 2p, 3p, ... . The intermediate
states include continuum as well as discrete states. Energy conservation requires that the
sum of the two photon energies be equal to the transition energy ~ω,

ω1 + ω2 = ω . (5.6)


