Estructura de la materia 3 2^{do} Cuatrimestre 2022

Serie 4 Transiciones, excitación y dinámica atómica

- 1. (a) Demuestre, calculando la integral, que el elemento de matriz de transición dipolar $\int \psi_{1s}^* \hat{r} \psi_{2s} d^3r$ de la transición $1S \to 2S$ en el átomo de H es cero. Use las funciones de onda del H.
 - (b) Generalice el resultado anterior mostrando que la paridad del estado inicial y la del final en transiciones dipolares tienen que ser distintas.
- 2. Las funciones de onda de un atomo hidrogenoide se pueden escribir de la siguiente forma:

$$\psi(r, \theta, \varphi) = F(r, \theta) \exp(im\varphi)$$
.

Considere a \hat{z} como la dirección de cuantización. Suponga una transición dipolar de un estado fundamental con proyección de momento angular m a un estado excitado con proyección m'. Considerando la integral sobre φ , muestre que el elemento de matriz correspondiente es cero excepto en los siguientes casos:

- (a) m' = m para luz con polarización $\hat{\mathbf{z}}$;
- (b) m' = m + 1 para luz con polarización σ^+ ($\hat{\mathbf{x}} + i\hat{\mathbf{y}}$);
- (c) m' = m 1 para luz con polarización σ^- ($\hat{\mathbf{x}} i\hat{\mathbf{y}}$);
- (d) $m' = m \pm 1$ para luz con polarización $\hat{\mathbf{x}}$ o $\hat{\mathbf{y}}$.
- 3. Se tiene un conjunto de átomos con tres niveles J=0, J'=1 y J''=0, como se ve en el esquema de abajo. Inicialmente se encuentran todos en el estado con J=0. En este problema vamos a asumir que no hay decaimiento espontáneo.

$$J'' = 0$$

$$J' = 1$$

$$m' = -1$$

$$m' = 0$$

$$m' = +1$$

$$J = 0$$

- (a) Se aplica un pulso corto de luz sintonizado a la transición $J \longleftrightarrow J'$ con polarización \hat{z} . ¿Cómo será el estado de los átomos excitados al nivel J'?
- (b) Repetir el ítem (a) para el caso de polarización \hat{x} .
- (c) En las condiciones del ítem (b), mostrar que si se aplica un segundo pulso corto de luz sintonizado a la transición $J' \longleftrightarrow J''$ con polarización \hat{x} , el estado J'' puede poblarse, mientras que eso no sucede si el segundo pulso esta polarizado en \hat{y} . Es decir, el sistema se encuentra en un estado oscuro para la absorción de luz con polarización \hat{y} en la transición $J' \longleftrightarrow J''$.

- (d) Considere de nuevo la situación del ítem (b). Ahora, luego del pulso, se enciende un campo magnético $\vec{B} = B_0 \hat{z}$. Calcule como será en función del tiempo la absorción de luz con polarización \hat{y} en la transición $J' \longleftrightarrow J''$. ¿A qué frecuencia oscila?
- 4. Bombeo óptico. Se tiene un conjunto de átomos cuyo estado fundamental corresponde a un nivel con momento angular total J. Inicialmente el problema es completamente isótropo (es decir, el estado inicial es una mezcla de todas las componentes m_J). Estudiaremos estructuras atómicas distintas, representadas en la figura.

Considerar los casos A, B y C, en donde el nivel excitado, con J', decae siempre al nivel con J. Se aplican sucesivamente pulsos de luz resonantes a la transición $J \longleftrightarrow J'$, siempre con polarización lineal de tal forma de inducir transiciones π .

- (a) Discutir en cada caso qué sucederá con las poblaciones del estado fundamental. Identificar en cada caso qué estados serán "oscuros".
- (b) Repetir el ítem (a) para luz circularmente polarizada que genere transiciones σ^+ .

Ayuda: en este problema no es necesario hacer cuentas ni calcular elementos de matriz, excepto para las transiciones $m_J = 0 \longleftrightarrow m_J' = 0$, ya que una de ellas es prohibida.

A) B) C)
$$J' = 0 J' = 1 J' = 2 J$$

$$J=1$$
 — — $J=1$ — — $J=1$ — — $J=1$

- 5. Considere un ensamble de N átomos con una transición entre dos estados de energía E_1 y E_2 no degenerados, de manera que $E_2 E_1 = \hbar \omega_0$, con espectro de absorción $s(\omega)$ Lorentziano dado por el ancho natural Γ de la transición, e inmersos en un campo electromagnético cuya densidad espectral de energía es $\rho(\omega)$. Sean N_1 y N_2 la cantidad de átomos en el estado de E_1 y E_2 , respectivamente. Utilice los coeficientes de Einstein A y B, y asuma que el espectro del campo electromagnético puede considerarse mucho más ancho que el ancho natural de la transición.
 - (a) ¿Cuál es la probabilidad por unidad de tiempo de que suceda un evento de absorción?
 - (b) Utilizando el ítem (a), escriba las ecuaciones para las tasas de variación de N_1 y N_2 , y resuelva para el estado estacionario del sistema.
 - (c) Definiendo $S = 2B\rho(\omega_0)/A$, calcule las poblaciones para los casos S = 0 y $S = \infty$. Al parámetro S se lo conoce como "parámetro de saturación".
 - (d) Calcule la potencia absorbida. ¿Cuánto vale para el caso $S = \infty$?
- 6. Se repiten las condiciones del problema anterior, pero ahora consideraremos que la radiación es producida por un láser y es monocromática con frecuencia ω_L . La densidad espectral de energía en este caso es $\rho(\omega) = I\delta(\omega \omega_L)/c$, en donde I es la **intensidad** del láser.

- (a) Repita los items del problema 5 redefiniendo acordemente el parámetro de saturación, que en este caso dependerá de ω a través de $s(\omega)$.
- (b) Observando la dependencia en frecuencia de la potencia absorbida, calcule el ancho del espectro de absorción. ¿Cuál es el mecanismo de ensanchamiento del espectro en este caso?

Ecuaciones ópticas de Bloch

7. En este problema se pretende calcular la dinámica *exacta* de un sistema de dos niveles interactuando con radiación monocromática en la aproximación dipolar. Para ello, considere el siguiente Hamiltoniano:

$$H_{\mathrm{tot}} = H_0 + H_I = \frac{\hbar \omega_0}{2} \sigma_z - \vec{d} \cdot \vec{E}$$

Allí, $\vec{E}(t) = E_0 \hat{\epsilon} \cos{(\omega_L t)}$ es el campo eléctrico del láser de frecuencia ω_L y vector de polarización $\hat{\epsilon}$. Se propone trabajar en la representación de interacción, en donde la función de onda se escribe como $|\psi(t)\rangle = c_1(t)e^{-i\omega_1 t}|g\rangle + c_2(t)e^{-i\omega_2 t}|e\rangle$ con $\omega_1 = -\omega_0/2$ y $\omega_2 = \omega_0/2$.

- (a) Encontrar la ecuación diferencial para la evolución temporal de los coeficientes $c_1(t)$ y $c_2(t)$.
- (b) Demostrar que bajo la aproximación de onda rotante $(|\omega_L \omega_0| \ll \omega_L + \omega_0)$ las ecuaciones resultantes son:

$$\dot{c}_1(t) = i \frac{\Omega_0}{2} e^{i\delta t} c_2(t)$$

$$\dot{c}_2(t) = i\frac{\Omega_0}{2}e^{-i\delta t}c_1(t)$$

en donde $\Omega_0 = \langle g | \vec{d} \cdot \hat{\epsilon} | e \rangle \frac{E_0}{\hbar}$ y $\delta = \omega_L - \omega_0$.

- (c) Para el caso $\delta = 0$ y condiciones iniciales $c_1(0) = 1$ y $c_2(0) = 0$, calcular la población del estado excitado en función del tiempo.
- (d) Muestre que definiendo funciones $\tilde{c}_1(t) = c_1(t) \ e^{-i\frac{\delta}{2}t}$ y $\tilde{c}_2(t) = c_2(t) \ e^{i\frac{\delta}{2}t}$, las ecuaciones de la evolución temporal se reducen a un sistema con coeficientes independientes del tiempo. Esta transformación implica moverse a un marco rotante con el láser. Resuélvalo para condiciones iniciales arbitrarias.
- 8. Esfera de Bloch. A un estado cualquiera del sistema de dos niveles del problema anterior se lo puede representar sobre una esfera como un vector \vec{a} definido de tal manera de que la matriz densidad del estado sea igual a $\rho = \frac{1}{2} (I + \vec{a} \cdot \vec{\sigma})$.
 - (a) Encontrar el vector de Bloch \vec{a} para los siguientes estados:
 - $|\psi\rangle = |g\rangle$
 - $|\psi\rangle = |e\rangle$
 - $|\psi\rangle = \frac{1}{\sqrt{2}}(|g\rangle \pm |e\rangle)$

- (b) Interferometría de Ramsey. Se tiene inicialmente un sistema atómico en el estado fundamental $|g\rangle$. Considerando la dinámica del problema anterior, se realiza la siguiente secuencia: se aplica un pulso láser de duración $\tau=\pi/2\Omega_0$, luego se espera un tiempo T y tras lo cual vuelve a aplicarse un pulso idéntico. Calcular la población del estado excitado como función del tiempo T y de la desintonía δ .
- 9. Ahora al sistema de dos niveles le agregaremos los efectos de la emisión espontánea. Dado que este es un proceso no unitario, es necesario recurrir al formalismo de matriz densidad ρ cuya evolución unitaria puede calcularse a partir del hamiltoniano como $\frac{d\hat{\rho}}{dt} = -i[\hat{H}, \hat{\rho}]$. Con emisión espontanea, la evolución de $\hat{\rho}$ sigue las siguientes ecuaciones:

$$\frac{d}{dt}\rho_{gg} = +\Gamma\rho_{ee} + i\frac{\Omega_0}{2}\left(\rho_{eg} - \rho_{ge}\right)$$

$$\frac{d}{dt}\rho_{ee} = -\Gamma\rho_{ee} + i\frac{\Omega_0}{2}\left(\rho_{ge} - \rho_{eg}\right)$$

$$\frac{d}{dt}\rho_{ge} = -(\Gamma/2 + i\delta)\rho_{ge} + i\frac{\Omega_0}{2}\left(\rho_{ee} - \rho_{gg}\right)$$

$$\frac{d}{dt}\rho_{eg} = -(\Gamma/2 - i\delta)\rho_{eg} + i\frac{\Omega_0}{2}\left(\rho_{gg} - \rho_{ee}\right)$$

(a) Utilizando que Tr $(\hat{\rho}) = 1$ y que $\hat{\rho} = \hat{\rho}^{\dagger}$, demostrar que las 4 ecuaciones pueden reducirse al siguiente sistema:

$$\frac{d}{dt}\rho_{eg} = -(\Gamma/2 - i\delta)\rho_{eg} - \frac{iw\Omega_0}{2}$$
$$\frac{d}{dt}w = -\Gamma(w+1) - i\Omega_0 \left(\rho_{eg} - \rho_{ge}\right)$$

$$con w = \rho_{ee} - \rho_{qq}.$$

- (b) Resolver y calcular $\rho(t)$ en el caso en que no hay campo de radiación monocromática. Considere condiciones iniciales $\rho_{ee} = 1$ y $\rho_{eq} = 0$.
- (c) Definiendo al parámetro de saturación S como

$$S = \frac{\Omega_0^2/2}{\delta^2 + \Gamma^2/4}$$

hallar las soluciones estacionarias. Analizar el límite $\Omega_0 \longrightarrow \infty$.