Práctica ${
m N}^{\circ}\,0:$ Vectores

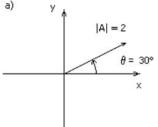
1. Determine el módulo y la dirección de los siguientes vectores. Represéntelos gráficamente.

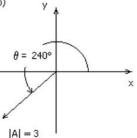
A = (-4;3)

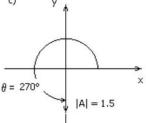
B = (2;0) $\mathbf{C} = -2\hat{\mathbf{x}} - 3\hat{\mathbf{y}}$ $\mathbf{D} = 0\hat{\mathbf{x}} - 5\hat{\mathbf{y}}$

2. Halle las componentes cartesianas de los siguientes vectores:

a)







3. Dados los vectores **A** y **B**, halle gráficamente la suma.

(a) $\mathbf{A} = (-3, 2) \mathbf{y} \mathbf{B} = (-2, 5)$.

(b) $|\mathbf{A}| = 2$, $\theta_A = 20^{\circ} \text{ y } |\mathbf{B}| = 3$, $\theta_B = 135^{\circ}$.

(c) $\mathbf{A} = (-2, 0) \ \mathbf{B} = (0, 4)$.

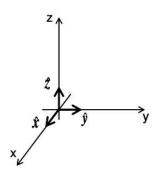
- 4. Sean A y B los vectores dados en el ejercicio anterior. Halle analíticamente las componentes cartesianas y polares del vector $\mathbf{A} + \mathbf{B}$, y del vector $\mathbf{A} - \mathbf{B}$. $eq \mathbf{E} \mathbf{I}$ módulo del vector suma, C = A + B, es igual a la suma de los módulos de A y de **B**?
- 5. Dados los vectores $\mathbf{A} = (3\hat{x} + 2\hat{y} + 3\hat{z}), \mathbf{B} = (4\hat{x} 3\hat{y} + 2\hat{z}), \mathbf{C} = (-2\hat{y} 5\hat{z}).$ Efectúe las siguientes operaciones:

(a) (A - B)/|C|

(b) 5A - 2C (c) -2A + B - C/5

Se define el producto escalar entre dos vectores como $\mathbf{A} \cdot \mathbf{B} =$ $|\mathbf{A}||\mathbf{B}|\cos\theta$, donde θ es el ángulo que forman los dos vectores.

6. Sean $\{\hat{x}, \hat{y}, \hat{z}\}\$ los versores usuales de la terna derecha mostrada en la figura.



La base canónica se define con los siguientes versores: $\hat{\mathbf{x}} = (1;0;0)$, $\hat{\mathbf{y}} = (0;1;0)$, $\hat{\mathbf{z}} = (0;0;1)$. Calcule: $\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}$, $\hat{\mathbf{x}} \cdot \hat{\mathbf{y}}$, $\hat{\mathbf{x}} \cdot \hat{\mathbf{z}}$, $\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}$, $\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}$, $\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}$.

7. Usando la propiedad distributiva del producto escalar respecto a la suma y los resultados del ejercicio anterior, demuestre que si

$$\mathbf{A} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}} \mathbf{y} \mathbf{B} = B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}$$
, entonces:

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$$

- 8. Efectúe el producto escalar entre los vectores **A** y **B** y diga si en algún caso **A** es perpendicular a **B**.
 - (a) $\mathbf{A} = 3\hat{x} 2\hat{y} + 1\hat{z}$ $\mathbf{B} = -1\hat{x} + 3\hat{z}$
 - (b) $\mathbf{A} = (2;3;-1)$ $\mathbf{B} = (6;-5;2)$
 - (c) $|\mathbf{A}| = 3$, $|\mathbf{B}| = 2$, $\theta_{AB} = 60^{\circ}$

Se define el producto vectorial entre dos vectores como $A\times B=C\,\text{tal}$ que

- (a) $|C| = |A| \cdot |B| \, sen \, \theta$, donde $\, \theta \,$ es el ángulo que forman los dos vectores.
- (b) C tiene dirección perpendicular al plano determinado por $A\ y\ B$
- (c) El sentido es tal que $\ A, \ B$ y $\ C$ estén relacionados por la regla de la mano derecha.
- 9. Sean $\{\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}\}$ los versores usuales de la terna derecha. Calcule: $\hat{\mathbf{x}} \times \hat{\mathbf{x}}, \hat{\mathbf{x}} \times \hat{\mathbf{y}}, \hat{\mathbf{x}} \times \hat{\mathbf{z}}, \hat{\mathbf{y}} \times \hat{\mathbf{x}}, \hat{\mathbf{y}} \times \hat{\mathbf{y}}, \hat{\mathbf{y}} \times \hat{\mathbf{z}}, \hat{\mathbf{z}} \times \hat{\mathbf{x}}, \hat{\mathbf{z}} \times \hat{\mathbf{y}}, \hat{\mathbf{z}} \times \hat{\mathbf{z}},$
- 10. Usando la propiedad distributiva del producto vectorial respecto de la suma y los resultados del ejercicio anterior, demuestre que si: $\mathbf{A} = A_x \,\hat{\mathbf{x}} + A_y \,\hat{\mathbf{y}} + A_z \,\hat{\mathbf{z}} \,\mathbf{y}$ $\mathbf{B} = B_x \,\hat{\mathbf{x}} + B_y \,\hat{\mathbf{y}} + B_z \,\hat{\mathbf{z}}$, entonces:

$$\mathbf{A} \times \mathbf{B} = (\mathbf{A}_{\mathtt{y}} \, \mathbf{B}_{\mathtt{z}} - \mathbf{A}_{\mathtt{z}} \, \mathbf{B}_{\mathtt{y}}; \mathbf{A}_{\mathtt{z}} \, \mathbf{B}_{\mathtt{x}} - \mathbf{A}_{\mathtt{x}} \, \mathbf{B}_{\mathtt{z}}; \mathbf{A}_{\mathtt{x}} \, \mathbf{B}_{\mathtt{y}} - \mathbf{A}_{\mathtt{y}} \, \mathbf{B}_{\mathtt{x}})$$

- 11. Dados los vectores $\mathbf{A}=(3\,\hat{\mathbf{x}}+2\,\hat{\mathbf{y}}+1\,\hat{\mathbf{z}})$, $\mathbf{B}=(1\,\hat{\mathbf{x}}+0\,\hat{\mathbf{y}}-1\,\hat{\mathbf{z}})$, $\mathbf{C}=(0;-2;4)$. Efectúe las siguientes operaciones:
 - (a) $\mathbf{B} \times \mathbf{C}$
 - (b) $-4(\mathbf{B} \times \mathbf{B}) \mathbf{A}$
 - (c) $(\mathbf{A} + \mathbf{B}) \times \mathbf{C}$
 - (d) $(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$