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Extrasolar Planets
• Modelos de formación y evolución de planetas. 

• Estructura interna de planetas gigantes y terrestres. 

• Composición atmosférica. Dinámica atmosférica (exoclima). 

• Mejor comprensión de la actividad estelar. 

• Teoría de disipación por mareas. 

• Censo galáctico. 

• ¿Estamos solos?



Data from exoplanets.eu (2016-09-14)

~1400 planetas

(con masa medida)
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High-precision radial velocity surveys







Cross correlation



Cross correlation
10 Title : will be set by the publisher

Fig. 4. Illustration of the construction of the cross-correlation function. Diagrams on

the left represent the stellar spectrum (dashed lines) and the binary mask (solid lines,
transmission zones depicted as hatched areas). Diagrams on the right show the result of

the cross-correlation process. Courtesy of Claudio Melo.

searches was made by Campbell et al. (1988), who used a hydrogen fluoride (HF)
cell (Campbell & Walker 1979). At present, all planet search programs based on
this technique use an iodine cell and the technique is commonly referred to as the
iodine cell technique.

Instrumentally, the iodine cell technique is easily implemented on any existing
slit spectrograph. The main complication of the method resides in the Doppler
analysis. In practice, spectra taken through the iodine cell are broken up into
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Radial velocity time series
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Planeta Período Amplitud VR

Júpiter 3 d 140 m/s
Júpiter 11.9 yr 12 m/s

Neptuno 3 d 7.6 m/s
Tierra 3 d 44 cm/s
Tierra 1 yr 9 cm/s

K? ⇡
✓
2⇡G

P

◆1/3 1p
1� e2

m2 sin i

m2/3
1



SDO



State-of-the-art radial velocities

�RV = 1.1 ms�1

HARPS dataset on Tau Ceti: m/s-precision over 11.5 years

How many periodic signals 
(if any) are there? 



Traditional approach: the GLS periodogram

Generalised Lomb Scargle (GLS): Sort of Fourier Transform for unevenly sampled data.
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Traditional approach: the GLS periodogram

Generalised Lomb Scargle (GLS): Sort of Fourier Transform for unevenly sampled data.

p(!) =
�2
0 � �2

!

�2
0



GLS periodogram: peak significance

Generalised Lomb Scargle (GLS): Sort of Fourier Transform for unevenly sampled data.
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GLS periodogram: peak significance

If errors are Gaussian, Lomb (1976) demonstrated that p(ω) is distributed as !2 with 2 
degrees of freedom.

Pr [(p(!) > z)] = exp(�z)

If N independent frequencies are tested, the probability that they are all below z is 

[1� exp(�z)]N

Then, the probability that at least one peak is above z (called False Alarm Probability) is

FAP = 1� [1� exp(�z)]N
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GLS periodogram: peak significance

Many (good) reasons _not_ to trust the Gaussian assumption:

• the data contains a signal.

• errors are under- or overestimated.

• intrinsic variability is present. 

Monte Carlo simulations to estimate distribution of the test statistic.
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GLS periodogram: peak significance

Empirical distribution of test statistics.

Recent work by Sulis, Mary & Bigot (2017) study different test statistics for 
exoplanet detection. IEEE TRANSACTIONS ON SIGNAL PROCESSING.
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The periodogram analysis

• Perform a frequency analysis of the RV measurements. 


• Many methods exist (Generalized Lomb Scargle, Zechmeister & Kürster 
(2009); Keplerian periodogram, Baluev 2013; …)


• Remove signals whose amplitude exceed a certain level (issues arise on the 
definition of this level).


• Continue until no further significant signal is found.


• Perform an analysis including all the frequencies detected.



The periodogram analysis HD10180 (Lovis et al. 2011)



The periodogram analysis HD10180 (Lovis et al. 2011)



On periodograms
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results when the signals are clear and their periods can be con-
strained accurately, this method cannot be expected to provide
reliable results for extremely weak signals with large (and un-
known) uncertainties. As noted by Lovis et al. (2011), when
testing the significance of the 600-day signal, they could not
take into account the uncertainties of the parameters of each
Keplerian signal, that of the reference velocity, or the uncertainty
in estimating the excess noise in the data correctly.

The above “frequentist” way of performing the analyses and
intepreting the consequent results is different from the Bayesian
one. Because we only received one set of data, we have to
base all our results on that and not some hypothetical data that
would have corresponded to a repetition of the original measure-
ments. The Bayesian philosophy is to infer all the information
from the data by combining them with our prior beliefs on what
might be producing them. For instance, as described above when
discussing our choice of priors, we can expect tightly packed
multiplanet systems to be more likely to contain planets on
close-circular orbits than on very eccentric ones. Also, with the
powerful posterior sampling algorithms available, it is possible
to take the uncertainties in every parameter into account simulta-
neously, which enables the detection of weak signals in the data
(e.g. Gregory 2005, 2007a,b; Tuomi & Kotiranta 2009) and pre-
vents the detection of false positives, as happened in the case of
Gliese 581 (Vogt et al. 2010; Gregory 2011; Tuomi 2011).

Yet, despite the above problems in the traditional peri-
odogram analyses, we take advantage of the power spectra of
the residuals in our posterior samplings. The highest peaks
in the periodogram can be used very efficiently together with
Bayesian methods by using the corresponding periodicities as
initial states of the Markov chains in the adaptive Metropolis al-
gorithm. Because of this choice, the initial parameter vector of
the Markov chain starts very close to the likely maximum a pos-
teriori (MAP) solution, which makes its convergence to the pos-
terior density reasonably rapid and helps reducing computational
requirements.

4. Results

When drawing a sample from the parameter posterior density
and using it to calculate the corresponding model probabilities,
it became crucial that this sample was a statistically representa-
tive one. While posterior samplings generally provide a global
solution, it is always possible that the chain converges to a lo-
cal maximum and stays in its vicinity within a sample of finite
size. To make sure that we indeed received the global solution,
we calculated several Markov chains starting from the vicinity
of the apparent MAP solution and compared them to see that
they indeed corresponded to the same posterior probability den-
sity. In practice, sampling the parameter spaces was computa-
tionally demanding because the probability that the parameter
vectors drawn from the Gaussian proposal density are close to
the posterior maximum decreases rapidly when the number of
parameters with non-Gaussian probability densities increases.
Therefore, while models with 0−6 planets were reasonably easy
to sample and we received acceptance rates of 0.1−0.3, these
rates decreased when increasing the number of signals in the
model further. As a result, for models with 8−9 Keplerian sig-
nals, the acceptance rates decreased below 0.1 and forced us to
increase the chain lenghts by two orders of magnitude from a
typical 106 to as high as 108.

In the following subsections, the results are based on sev-
eral samplings that yielded the same posterior densities, and also
consistent model probabilities.

Table 1. The relative posterior probabilities of models with k = 0, ..., 9
Keplerian signals (Mk) given radial velocities of HD 10180 (or data, d)
together with the periods (Ps) of the signals added to the model when
increasing the number of signals in the model by one.

k P(Mk|d) log P(d|Mk) rms [m s−1] Ps [days]

0 1.5 × 10−125 −621.29 ± 0.03 6.29 –
1 1.6 × 10−114 −595.15 ± 0.04 5.39 5.76
2 1.5 × 10−98 −556.87 ± 0.02 4.34 123
3 4.1 × 10−86 −528.44 ± 0.07 3.62 2200
4 2.7 × 10−53 −452.17 ± 0.13 2.43 49.8
5 7.2 × 10−20 −374.42 ± 0.05 1.59 16.35
6 3.4 × 10−13 −358.36 ± 0.12 1.41 600
7 3.8 × 10−7 −343.73 ± 0.09 1.32 1.18
8 0.003 −334.06 ± 0.06 1.24 67.5
9 0.997 −327.79 ± 0.06 1.18 9.65

Notes. Also shown are the logarithmic Bayesian evidence (P(d|Mk))
and its uncertainties as standard deviations and the root mean square
(rms) values of the residuals for each model.

4.1. The number of significant periodicities

The posterior probabilities of the different models provide in-
formation on the number of Keplerian signals (k) in the data.
Lovis et al. (2011) were confident that there are six planets
orbiting HD 10180 based on their periodogram-based analy-
ses of model residuals and the corresponding random permu-
tations of them when calculating the significance levels of the
periodogram powers. They also concluded that the six plan-
ets in the system with increasing periods of 5.75962± 0.00028,
16.3567± 0.0043, 49.747± 0.024, 122.72± 0.20, 602± 11, and
2248+102

−106 days comprise a stable system given that the masses of
the planets are within a factor of ∼3 from the minimum masses
of 13.70± 0.63, 11.94± 0.75, 25.4± 1.4, 23.6± 1.7, 21.4± 3.0,
and 65.3± 4.6 M⊕, respectively.

Because Lovis et al. (2011) pointed out that there are actu-
ally two peaks in the periodogram corresponding to the seventh
signal, i.e. 1.18 and 6.51 day periodicities that are the one-day
aliases of each other, but noted that the 6.51 signal, if corre-
sponding to a planet, would cause the system to be unstable on
short timescales, we adopted the 1.18 periodicity as the seventh
signal in the data. The relative probabilities of the models with
k = 0, ..., 9 are shown in Table 1 together with the period (Ps) of
the next Keplerian signal added to the model.

According to the model probabilities in Table 1, the eight-
and nine-Keplerian models are the most probable descriptions
of the processes producing the data out of those considered.
Improving the statistical model by adding the seventh signal,
with a period of 1.18 days, increases the model probability by a
factor of more than 106, which makes the credibility of this sev-
enth signal high. Adding two more signals corresponding to 67.6
and 9.66 day periodicities increases the model probabilities even
more. As a result, the nine-Keplerian model receives the greatest
posterior probability of slightly more than 150 times more than
the next best model, the eight-Keplerian model. This enables us
to conclude that there is strong evidence in favour of the hypoth-
esis that the 67.6 and 9.66 days periodicities are not produced by
random processes, i.e. measurement noise.

4.2. Periodograms of residuals

We subtracted the models with six to nine periodic signals from
the data and calculated the Lomb-Scargle periodograms (Lomb
1976; Scargle 1982) of these residuals (Fig. 1) together with the
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M. Tuomi: Evidence for nine planets in the HD 10180 system

eccentricity orbits. Our choice was then a Gaussian prior for
the eccentricity, defined as π(ei) ∝ N(0,σ2

e) (with the corre-
sponding scaling in the unit interval), where the parameter of
this prior model is set as σe = 0.3. This choice penalises the
high-eccentricity orbits in practice but still allows them if the
data claim it. In practice, with respect to the weight this prior
puts on zero eccentricity, it gives the eccentricities of 0.2, 0.4,
and 0.6 relative weights of 0.80, 0.41, and 0.14, indicating that
this prior can only have a relatively minor effect on the posterior
densities.

Finally, we required that the planetary systems correspond-
ing to out Keplerian solution to the data did not have orbital
crossings between any of the companions. We used this condi-
tion as additional prior information by estimating that the likeli-
hood of having any two planets in orbits that cross one another
is zero. We could have used a more restrictive criteria, such as
the requirement that the planets do not enter each other’s Hill
spheres at any given time, but decided to keep the situation sim-
pler because we wanted to see whether the orbital periods of the
proposed companions are constrained by data instead of stability
criteria, as described in the next subsection.

This choice of restricting the solutions in such a way that
the corresponding planetary system does not suffer from desta-
bilising orbital crossings also helps reducing the computational
requirements by making the posterior samplings simpler. After
finding k Keplerian signals in the data, we simply searched for
additional signals between them by limiting the period space of
the additional signals between these k periods. We set the initial
periods of the k planets close to the solution of the k-Keplerian
model and performed k + 1 samplings where each begins with
the period of the k + 1th signal in different “gaps” around the
previously found k signals, i.e. corresponding to a planet inside
the orbit of the innermost one, between the two innermost ones,
and so forth. If a significant k + 1th signal is not found in one
of these “gaps”, the corresponding solution can simply be ne-
glected. However, if there are signals in two or more gaps, it
is straightforward to determine the most significant one because
they can be treated as different models containing the same exact
number of parameters. We then chose the most significant peri-
odicity as the k+1th one and continued testing whether there are
additional signals in the data. In this way, the problem of being
able to rearrange the signals in any order, that would cause the
posterior density to be actually highly multimodal (Feroz et al.
2011), actually disappears because in a given solution the or-
bital crossings are forbidden and the ordering of the companions
remains fixed.

3.3. Detection threshold

While the Bayesian model probabilities can be used reliably in
assessing the relative posterior probabilities of models with dif-
fering numbers of Keplerian signals (e.g. Ford & Gregory 2007;
Gregory 2011; Loredo et al. 2011; Tuomi & Kotiranta 2009;
Tuomi 2011), we introduced additional criteria to make sure that
the signals we detect can be interpreted as being of planetary
origin and not arising from unmodelled features in the measure-
ment noise or as spurious signals caused by measurement sam-
pling. Our basic criterion is that the posterior probability of a
model with k + 1 Keplerian signals has to exceed 150 times that
of a model with only k Keplerian signals to claim that there are
k+1 planets orbiting the target star. We chose this threshold prob-
ability based on the considerations of Kass & Raftery (1995).

We require that the signals we detect in the measure-
ments have radial velocity amplitudes, Ki for all i, statistically

distinguishable from zero. In practice this means that not only
the maximum a posteriori estimate is clearly greater than zero,
but that the corresponding Bayesian δ credibility sets, as defined
in e.g. Tuomi & Kotiranta (2009), do not allow the amplitude
to be negligible with δ = 0.99, i.e. with a probability of 99%.
The second criterion is that the periods of all signals (Pi) are
well-defined by the posterior samples in the sense that they can
be constrained from above and below and are not constrained
purely by the condition that orbital crossings corresponding to
the planetary orbits are not allowed.

To further increase the confidence of our solutions, we did
not set the prior probabilities of the different models equal in our
analyses. We suspect a priori that detecting k + 1 planets would
be less likely than detecting k planets in any given system. In
other words, we estimated that any set of radial velocity data
would be more likely to contain k Keplerian signals than k + 1.
Therefore, we set the a priori probabilities of models with k and
k + 1 Keplerian signals such that P(k) = 2P(k + 1) for all k, i.e.
we penalise the model with one additional planet by a factor of
two. Because of this subjective choice, if the model with k + 1
Keplerian signals receives a posterior probability that exceeds
our detection threshold of being 150 times greater than that of
the corresponding model with k Keplerian signals, we are likely
underestimating the confidence level of the model with k + 1
Keplerian signals relative to a uniform prior.

Physically, this choice of prior probabilities for different
models corresponds to the fact that the more planets there are
orbiting a star, the less stable orbits there will be left. Therefore,
we estimate that if k planets are being detected, there is naturally
“less room” for an additional k + 1th companion. However, this
might be true statistically, not in an individual case, which leaves
room for discussion. Yet, this and the benefit that we underesti-
mate the significance of any detected signals encourages us to
use this prior.

3.4. Frequentist and Bayesian detection thresholds

In addition to the Bayesian analyses described in the previous
subsections, we analysed the residuals of each model using the
Lomb-Scargle periodograms (Lomb 1976; Scargle 1982). As in
Lovis et al. (2011), we plotted the 10%, 1%, and 0.1% false-
alarm probabilities (FAPs) to the periodograms to see the sig-
nificance of the powers they contain. However, because Lovis
et al. (2011) calculated the FAPs in a frequentist manner by per-
forming random permutations to the residuals while keeping the
exact epochs of the data fixed and by seeing how often this ran-
dom permutation produces the observed powers, we first put this
periodogram approach into its philosophical context.

Generating N random permutations of the residuals for each
model aims at simulating a situation where it would be possible
to receive N independent sets of measurements from the system
of interest and seeing how often the measurement noise gener-
ates the signals corresponding to the highest powers in the peri-
odogram. While they would not have been independent even in
the case this process tries to simulate, because the exact epochs
are fixed making the measurements actually dependent through
the dimension of time (the measurement is actually a vector of
two numbers, radial velocity, and time), this approach suffers
from another more significant flaw. The uncertainties of the sig-
nals removed from the data cannot be taken into account, which
means that the method assumes the removed signals were known
correctly. Obviously this is not the case even with the strongest
signals, and even less so for the weaker ones, making the pro-
cess prone to biases. Therefore, while likely producing reliable
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Periodogram challenged HD10180
Tuomi (2012): nine signals.



Issues with p-values
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• There is no reason to believe p-values are similar to posterior 

probabilities of the null hypothesis (KR95).
• Frequentist tests reject the null almost systematically for large 

samples (KR95).
• Most studies use the conventional limit p < 0.05 —> Large 

fraction of false positives.

• Simulations show that ~30% of the cases with p < 0.05 the 
null hypothesis is true (Sellke, Bayarri, Berger, 2001).

KR95: Kass & Raftery (1995)



Issues with p-values

• More technical issues: 
• Dependent of experimental design, sampling techniques. 
• Does not comply with the likelihood principle.



“… a research finding is less likely to be true when the studies conducted in a 
field are smaller; when effect sizes are smaller; when there is a greater number 
and lesser preselection of tested relationships; where there is greater flexibility 
in designs, definitions, outcomes, and analytical modes; when there is greater 
financial and other interest and prejudice; and when more teams are involved in 
a scientific field in chase of statistical significance. Simulations show that for 
most study designs and settings, it is more likely for a research claim to be false 
than true…."



Editorial

David Trafimow and Michael Marks
New Mexico State University

The Basic and Applied Social Psychology (BASP) 2014
Editorial emphasized that the null hypothesis signifi-
cance testing procedure (NHSTP) is invalid, and thus
authors would be not required to perform it (Trafimow,
2014). However, to allow authors a grace period, the
Editorial stopped short of actually banning the NHSTP.
The purpose of the present Editorial is to announce that
the grace period is over. From now on, BASP is banning
the NHSTP.

With the banning of the NHSTP from BASP, what
are the implications for authors? The following are
anticipated questions and their corresponding answers.

Question 1. Will manuscripts with p-values be desk
rejected automatically?

Answer to Question 1. No. If manuscripts pass the
preliminary inspection, they will be sent out for review.
But prior to publication, authors will have to remove all
vestiges of the NHSTP (p-values, t-values, F-values,
statements about ‘‘significant’’ differences or lack
thereof, and so on).

Question 2. What about other types of inferential stat-
istics such as confidence intervals or Bayesian methods?

Answer to Question 2. Confidence intervals suffer
from an inverse inference problem that is not very differ-
ent from that suffered by the NHSTP. In the NHSTP,
the problem is in traversing the distance from the prob-
ability of the finding, given the null hypothesis, to the
probability of the null hypothesis, given the finding.
Regarding confidence intervals, the problem is that,
for example, a 95% confidence interval does not indicate
that the parameter of interest has a 95% probability
of being within the interval. Rather, it means merely
that if an infinite number of samples were taken and
confidence intervals computed, 95% of the confidence
intervals would capture the population parameter.
Analogous to how the NHSTP fails to provide the prob-
ability of the null hypothesis, which is needed to provide

a strong case for rejecting it, confidence intervals do not
provide a strong case for concluding that the population
parameter of interest is likely to be within the stated
interval. Therefore, confidence intervals also are banned
from BASP.

Bayesian procedures are more interesting. The usual
problem with Bayesian procedures is that they depend
on some sort of Laplacian assumption to generate num-
bers where none exist. The Laplacian assumption is that
when in a state of ignorance, the researcher should
assign an equal probability to each possibility. The
problems are well documented (Chihara, 1994; Fisher,
1973; Glymour, 1980; Popper, 1983; Suppes, 1994;
Trafimow, 2003, 2005, 2006). However, there have been
Bayesian proposals that at least somewhat circumvent
the Laplacian assumption, and there might even be cases
where there are strong grounds for assuming that the
numbers really are there (see Fisher, 1973, for an
example). Consequently, with respect to Bayesian pro-
cedures, we reserve the right to make case-by-case
judgments, and thus Bayesian procedures are neither
required nor banned from BASP.

Question 3. Are any inferential statistical procedures
required?

Answer to Question 3. No, because the state of the art
remains uncertain. However, BASP will require strong
descriptive statistics, including effect sizes. We also
encourage the presentation of frequency or distribu-
tional data when this is feasible. Finally, we encourage
the use of larger sample sizes than is typical in much psy-
chology research, because as the sample size increases,
descriptive statistics become increasingly stable and
sampling error is less of a problem. However, we will
stop short of requiring particular sample sizes, because
it is possible to imagine circumstances where more
typical sample sizes might be justifiable.

We conclude with one last thought. Some might view
the NHSTP ban as indicating that it will be easier to
publish in BASP, or that less rigorous manuscripts will
be acceptable. This is not so. On the contrary, we believe

Correspondence should be sent to David Trafimow, Department of
Psychology, MSC 3452, New Mexico State University, P.O. Box
30001, Las Cruces, NM 88003-8001. E-mail: dtrafimo@nmsu.edu

BASIC AND APPLIED SOCIAL PSYCHOLOGY, 37:1–2, 2015
Copyright # Taylor & Francis Group, LLC
ISSN: 0197-3533 print=1532-4834 online
DOI: 10.1080/01973533.2015.1012991
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• Robust logical foundation. 

• Extension of logic and the works of Cox, Pólya and Jaynes. 

• Answer the question you want to ask.

• Bayes factors are applicable equally well to nested and non-nested 
models.

• Bayes factors were shown to favour simpler model even when more 
complex one was correct (Atkinson 1978), but Smith & Spiegelhalter 
(1980) showed that this only happens when the predictions from the 
two models are equivalent. 

• Sensitivity to priors.

• Computational difficulty.

Bayesian alternative



Two basic tasks of statistical inference

Learning process 
(parameter estimation) 

Decision making 
(model comparison)



Bayesian probability represents a state of 

knowledge

Learning process

p(Hi|I) p(Hi|I,D)

D: data Discrete space  
(hypothesis space)

Posterior
p(✓̄|D,Hi, I)p(✓̄|Hi, I)

Prior: parameter vector 
Hi: hypothesis 
 I:  information

✓̄



Enter the likelihood function

Learning process

p(✓̄|Hi, I,D) =
p(D|✓̄, Hi, I)

p(D|Hi, I)
· p(✓̄|Hi, I)

PriorPosterior

D: data

: parameter vector 
Hi: hypothesis 
 I:  information

✓̄

p(✓̄|D,Hi, I) / L✓(Hi) · p(✓̄|Hi, I)

The proportionality constant has many names: marginal 
likelihood, global likelihood, model evidence, prior 
predictive. Hard to compute.



Optimising the learning process

• The likelihood needs to be selective for the learning 
process to be effective.

Two extreme cases are shown in Figure 1.2. In the first, panel (a), the prior is

much broader than the likelihood. In this case, the posterior PDF is determined
entirely by the new data. In the second extreme, panel (b), the new data are much

less selective than our prior information and hence the posterior is essentially the
prior.

Now suppose we acquire more data represented by proposition D2. We can again
apply Bayes’ theorem to compute a posterior that reflects our new state of knowledge

about the parameter. This time our new prior, I 0, is the posterior derived from D1; I,
i.e., I 0 ¼D1; I. The new posterior is given by

pðH0jD2; I
0Þ / pðH0jI 0ÞpðD2jH0; I

0Þ: (1:13)

1.3.4 Example of the use of Bayes’ theorem

Here we analyze a simple model comparison problem using Bayes’ theorem. We start
by stating our prior information, I, and the new data, D.

I stands for:

a) Model M1 predicts a star’s distance, d1 ¼ 100 light years (ly).

b) Model M2 predicts a star’s distance, d2 ¼ 200 ly.

c) The uncertainty, e, in distance measurements is described by a Gaussian distribution of

the form

Parameter H0

(a)

Posterior
p(H0|D,M1,I )

Likelihood
p(D |H0,M1,I )

Prior
p(H0|M1,I )

Parameter H0

(b)

Posterior
p(H0|D,M1,I )

Prior
p(H0|M1,I )

Likelihood
p(D |H0,M1,I )

Figure 1.2 Bayes’ theorem provides a model of the inductive learning process. The posterior
PDF (lower graphs) is proportional to the product of the prior PDF and the likelihood function
(upper graphs). This figure illustrates two extreme cases: (a) the prior much broader than
likelihood, and (b) likelihood much broader than prior.
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b) Model M2 predicts a star’s distance, d2 ¼ 200 ly.

c) The uncertainty, e, in distance measurements is described by a Gaussian distribution of

the form

Parameter H0

(a)

Posterior
p(H0|D,M1,I )

Likelihood
p(D |H0,M1,I )

Prior
p(H0|M1,I )

Parameter H0

(b)

Posterior
p(H0|D,M1,I )

Prior
p(H0|M1,I )

Likelihood
p(D |H0,M1,I )

Figure 1.2 Bayes’ theorem provides a model of the inductive learning process. The posterior
PDF (lower graphs) is proportional to the product of the prior PDF and the likelihood function
(upper graphs). This figure illustrates two extreme cases: (a) the prior much broader than
likelihood, and (b) likelihood much broader than prior.
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Bayes’ theorem is also the base for model comparison

Computation of the evidence cannot be escaped.

but now

p(Hi|I,D) =
p(D|Hi, I)

p(D|I) · p(Hi|I)

p(D|Hi, I) =

Z

⇡
p(D|✓̄, Hi, I)p(✓̄|Hi, I) d

n✓

Decision making



Model comparison consists in computing the ratio of the 
posteriors (odds ratio) of two competing hypotheses.

p(Hi|I,D)
p(Hj |I,D) =

p(D|Hi,I)
p(D|Hj ,I)

· p(Hi|I)
p(Hj |I)

Decision making



Model comparison consists in computing the ratio of the 
posteriors (odds ratio) of two competing hypotheses.

Bayes factor Prior odds

p(Hi|I,D)
p(Hj |I,D) =

p(D|Hi,I)
p(D|Hj ,I)

· p(Hi|I)
p(Hj |I)

Decision making

Kass & Raftery (1995)



A built-in Occam’s razor

The likelihood has a characteristic width2 which we represent by !". The character-
istic width is defined by

Z

!"
d" pðDj";M1; IÞ¼ pðDj"̂;M1; IÞ $ !": (3:21)

Then we can approximate the global likelihood (Equation (3.8)) for M1 in the
following way:

pðDjM1; IÞ¼
Z

d" pð"jM1; IÞpðDj";M1; IÞ ¼ LðM1Þ

¼ 1

!"

Z
d" pðDj";M1; IÞ

% pðDj"̂;M1; IÞ
!"

!"

or alternatively; LðM1Þ % Lð"̂Þ !"
!"

:

(3:22)

Since model M0 has no free parameters, no integral need be calculated to find its
global likelihood, which is simply equal to the likelihood for model M1 for " ¼ "0,

pðDjM0; IÞ¼ pðDj"0;M1; IÞ¼Lð"0Þ: (3:23)

Thus the Bayes factor in favor of the more complicated model is

B10 %
pðDj"̂;M1; IÞ
pðDj"0;M1; IÞ

!"

!"
¼ Lð"̂Þ

Lð"0Þ
!"

!"
: (3:24)

Parameter θ

p(D|θ, M1, I ) = L(θ)

L(θ) = p(D|θ, M1, I )

p(θ|M1,I ) = 1
∆θ

θ

δθ

∆θ

∧
∧ ∧

Figure 3.1 The characteristic width !" of the likelihood peak and !" of the prior.

2 If the likelihood function is really a Gaussian and the prior is flat, it is simple to show that !" ¼ #"

ffiffiffiffiffiffi
2p

p
, where #" is the

standard deviation of the posterior PDF for ".
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p(D|Hi, I) =

Z
p(D|✓̄, Hi, I)p(✓̄|Hi, I) d✓̄

The Bayes factor naturally punishes models with more parameters

E.g.: model M0, without free parameters. Model M1, with one parameter.

M0 = M1(✓ = ✓0) p(D|M0, I) = p(D|✓0,M1, I)

p(D|M1, I) =

Z
p(D|✓,M1, I) · p(✓|M1, I) d✓

=
1

�✓

Z
p(D|✓,M1, I) d✓

⇡ p(D|✓̂,M1, I)
�✓

�✓

B10 ⇡ p(D|✓̂,M1, I)

p(D|✓0,M1, I)

�✓

�✓
Occam’s factor 
One per parameter



Estimating the marginal likelihood

p(D|Hi, I) =

Z

⇡
p(D|✓̄, Hi, I)p(✓̄|Hi, I) d

n✓

Marginal likelihood is a k-dimensional integral over parameter space.


Accounting for the “size” of parameter space bring many good 
things to Bayesian statistics, but the integral is intractable…


Large number of techniques to estimate the value of the integral:


• Asymptotic estimates (Laplace approximation, BIC).


• Importance sampling.


• Chib & Jeliazkov.


• Nested sampling.



• Polemical system: 3 planets (Mayor+2009); 6 planets (Tuomi+2013)
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Table 2. Fitted orbital solution for the planetary system around HD 40307: 3 Keplerians plus a linear drift. To better estimate uncertainties on the
adjusted parameters, the adopted solution has fixed circular orbits, the derived eccentricities being non-significant (see text).

Parameter HD 40307 b HD 40307 c HD 40307 d
P [days] 4.3115 ± 0.0006 9.620 ± 0.002 20.46 ± 0.01
T [JD-2 400 000] 54 562.77 ± 0.08 54 551.53 ± 0.15 54 532.42 ± 0.29
e 0.0 0.0 0.0
ω [deg] 0.0 0.0 0.0
K [m s−1] 1.97 ± 0.11 2.47 ± 0.11 4.55 ± 0.12
V [km s−1] 31.332
drift [m s−1/yr] 0.51 ± 0.10
f (m) [10−14 M⊙] 0.35 1.53 3.59
m2 sin i [M⊕] 4.2 6.9 9.2
a [AU] 0.047 0.081 0.134
Nmeas 135
Span [days] 1628
σ (O−C) [ms−1] 0.85
χ2

red 2.57
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Fig. 1. Lomb-Scargle periodogram (top) of the 135 HARPS radial ve-
locities of HD 40307. Clear peaks are evident at frequencies corre-
sponding to periods of 4.2, 9.6, and 20.5 days. The bottom panel
presents the corresponding window function of the data.

3 aforementioned peaks. We note that the conventional approach
of determining iteratively the solution for the different planets
one after the other is difficult because of the short periods, in par-
ticular close to resonances. To find the final solution, we rather
followed a genetic-algorithm approach to probe blindly the com-
plete parameter space. The ratios of periods P2/P1 = 2.23 and
P3/P2 = 2.13 probably differ sufficiently from 2 to be able to
exclude resonances.

In a first fit, the orbital eccentricities were allowed to be free
parameters. The derived solution showed non-significant eccen-
tricities of 0.008 ± 0.065, 0.033 ± 0.052 and 0.037 ± 0.052 for
the 3 planets, respectively. The residuals of the observed veloc-
ities around the best-fit 3-planet solution was 0.94 ms−1. With
circular orbits, the residuals remained unchanged as well as the
other orbital parameters. The solution with 3 circular orbits then
became the preferred one. Additionally, the residuals (O−C) also
exhibited a well defined linear drift during the time span of our
measurements. The best-fit solution was finally obtained by fit-
ting 3 Keplerian circular orbits plus a linear drift to our 128 more
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Fig. 2. Phase-folded radial velocities and Keplerian curve for each of
the planets, after correction for the effect of the 2 other planets and the
drift. Curves related to planets b, c, and d are illustrated from top to
bottom, respectively.
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3 aforementioned peaks. We note that the conventional approach
of determining iteratively the solution for the different planets
one after the other is difficult because of the short periods, in par-
ticular close to resonances. To find the final solution, we rather
followed a genetic-algorithm approach to probe blindly the com-
plete parameter space. The ratios of periods P2/P1 = 2.23 and
P3/P2 = 2.13 probably differ sufficiently from 2 to be able to
exclude resonances.

In a first fit, the orbital eccentricities were allowed to be free
parameters. The derived solution showed non-significant eccen-
tricities of 0.008 ± 0.065, 0.033 ± 0.052 and 0.037 ± 0.052 for
the 3 planets, respectively. The residuals of the observed veloc-
ities around the best-fit 3-planet solution was 0.94 ms−1. With
circular orbits, the residuals remained unchanged as well as the
other orbital parameters. The solution with 3 circular orbits then
became the preferred one. Additionally, the residuals (O−C) also
exhibited a well defined linear drift during the time span of our
measurements. The best-fit solution was finally obtained by fit-
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3 aforementioned peaks. We note that the conventional approach
of determining iteratively the solution for the different planets
one after the other is difficult because of the short periods, in par-
ticular close to resonances. To find the final solution, we rather
followed a genetic-algorithm approach to probe blindly the com-
plete parameter space. The ratios of periods P2/P1 = 2.23 and
P3/P2 = 2.13 probably differ sufficiently from 2 to be able to
exclude resonances.

In a first fit, the orbital eccentricities were allowed to be free
parameters. The derived solution showed non-significant eccen-
tricities of 0.008 ± 0.065, 0.033 ± 0.052 and 0.037 ± 0.052 for
the 3 planets, respectively. The residuals of the observed veloc-
ities around the best-fit 3-planet solution was 0.94 ms−1. With
circular orbits, the residuals remained unchanged as well as the
other orbital parameters. The solution with 3 circular orbits then
became the preferred one. Additionally, the residuals (O−C) also
exhibited a well defined linear drift during the time span of our
measurements. The best-fit solution was finally obtained by fit-
ting 3 Keplerian circular orbits plus a linear drift to our 128 more
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• Polemical system: 3 planets (Mayor+2009); 6 planets (Tuomi+2013)
• Tuomi et al. announced six planet using roughly the same data, a 

noise model, and a “Bayesian” approach.
• The sixth planet (g) would be a Super-Earth in the HZ.

M. Tuomi et al.: Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307

Fig. 12. Phase-folded MAP Keplerian signals of the six-planet solution with the other five signals and the MA(3) components removed from each
panel.

Table 4. Six-planet solution of HD 40307 radial velocities.

Parameter HD 40307 b HD 40307 c HD 40307 d
P [days] 4.3123 [4.3111, 4.3134] 9.6184 [9.6135, 9.6234] 20.432 [20.408, 20.454]
e 0.20 [0.04, 0.34] 0.06 [0, 0.17] 0.07 [0, 0.18]
edyn 0.16 [0.04, 0.25] 0.05 [0, 0.13] 0.05 [0, 0.13]
K [m s−1] 1.94 [1.67, 2.25] 2.45 [2.17, 2.75] 2.75 [2.40, 3.10]
ω [rad] 3.4 [2.4, 4.2] 4.1 [–] 0.3 [–]
M0 [rad] 4.3 [2.5, 5.9] 5.3 [–] 5.6 [–]
mp sin i [M⊕] 4.0 [3.3, 4.8] 6.6 [5.6, 7.7] 9.5 [8.0, 11.2]
a [AU] 0.0468 [0.0445, 0.0492] 0.0799 [0.0759, 0.0839] 0.1321 [0.1255, 0.1387]

HD 40307 e HD 40307 f HD 40307 g

P [days] 34.62 [34.42, 34.83] 51.76 [51.30, 52.26] 197.8 [188.8, 203.5]
e 0.15 [0, 0.28] 0.02 [0, 0.22] 0.29 [0, 0.60]
edyn 0.06 [0, 0.18] 0.03 [0, 0.13] 0.22 [0, 0.45]
K [m s−1] 0.84 [0.53, 1.16] 1.09 [0.77, 1.37] 0.95 [0.65, 1.27]
ω [rad] 5.3 [–] 6.2 [–] 1.6 [–]
M0 [rad] 6.2 [–] 0.5 [–] 5.6 [–]
mp sin i [M⊕] 3.5 [2.1, 4.9] 5.2 [3.6, 6.7] 7.1 [4.5, 9.7]
a [AU] 0.1886 [0.1782, 0.1969] 0.247 [0.233, 0.258] 0.600 [0.567, 0.634]

γ [m s−1] –0.47 [–0.71, –0.25]
σ j [m s−1] 0.73 [0.59, 0.87]

Notes. MAP estimates of the parameters and their 99% BCSs. Parameter edyn denotes the estimates for eccentricity after excluding solutions
corresponding to dynamically instability in 106 year time scales.

(125 versus 200 days, no activity signals appear to be related
to any of them) and because the MCMC samplings insist on
favouring the 200-day period, we conclude that the solution in
Table 4 is the one preferred by the data. The significances and
model probabilities using Red1 and Red2 are obviously lower
than when using the whole red half of the spectrum. Yet, with
the exception of the 34-day candidate in Red2 (chains converged
to the same solution, but model probability ratio was close to
the 1:150 threshold), all signals could be confidently identified
even using two subsets of the HARPS data (each contains 1/3 of
the full HARPS wavelength coverage). These tests give us fur-
ther confidence in the reality of the reported candidate signals.

As a final consistency check, we calculated the model prob-
abilities using different information criteria and compared them
to the Bayesian model probabilities derived using our approxi-
mation for the marginal integrals. First, we estimated the rela-
tive posterior probabilities using the Akaike information crite-
rion (AIC; see e.g. Liddle 2007; Burnham & Anderson 2002),
which is known to provide only rough approximations for the
marginal integrals. The AIC (actually its small-sample version,
AICc) yielded posterior probabilities for the different models
that did not differ by more than a factor of 5 from the prob-
abilities received using the OBMH estimate (Table 3). Using
the AIC in model selection yielded the same qualitative results
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p(Hi+1|D, I)

p(Hi|D, I)
for i = 0, 1, …, N



HD40307 
Díaz, et al. (2016a)

Bayesian analysis of new HARPS data. 
• 10+ years of data: 98 new nightly-averaged points (for a total of 226 measurements).



R. F. Díaz et al.: Bayesian re-analysis of three HARPS systems.
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Fig. 9. Upper panel: HARPS time series of HD40307. For log (R0HK),
the empty circles are the data included in M09, and have <log (R0HK)>=
�4.99. The filled circles are the new data presented here, with
<log (R0HK)>= �4.87. The vertical dashed line separates the active
(BJD < 2’454’800) from the inactive data set. Lower panel: corre-
sponding GLS periodograms for periods larger than 400 days.

6.1. Four-Keplerian model. A super-Earth companion on a
51.6-day period orbit.

A 51.6-day period signal appears as significant when the model
with three Keplerian signals and a degree-three polynomial is
subtracted (Fig. 10). Given that a long-term signal was sub-
tracted, particular care should be given to the spectral window: as
seen for HD1461, if the signal is not correctly corrected for, and
some power remains at very long periods, peaks will appear at
the frequencies present in the spectral window function. In this
case, no peak is present at frequencies corresponding to ⇠ 51
days in the window function of the HD40307 data. The 51.6-day
signal has an amplitude of 75 cm s�1. All models with at least
four Keplerians converge to a period of P ⇠ 51.6 days, with a
eccentricity distribution that in all cases is compatible with a cir-
cular orbit. Its amplitude, however, depends mildly on the model
(Fig. 13). In the model with 4 signals, the amplitude is around 75
cm s�1, while on more complex models the amplitude is closer
to 85 - 90 cm s�1.

When this fourth Keplerian is included, the model probabil-
ity increases by a factor of 9.3±1.7 or 22.6±2.8, using the CJ01
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Fig. 10. Periodogram of the RV data of HD40307 (top panel), and of
the residuals around models with three (second from top), four (second
from bottom), and five (bottom) Keplerian signals in addition to a cubic
function to take into account the long-term trend produced by the mag-
netic cycle of the star. The horizontal dotted and dashed lines represent
the 10% and 1% false alarm probability levels, respectively.

and P14 estimates respectively. This corresponds to "positive"
and "strong" evidence in favour of the fourth signal, according to
the scale presented by Kass & Raftery (1995). The evidence esti-
mations based on these two techniques agree within 30%, which
is remarkable given the di�culties associated with estimating the
evidence in high-dimensional spaces (Gregory 2007).

Note that this signal is not far from the rotational period esti-
mated based on the log (R0HK) level (Table 2). Indeed, the active
period of the bisector velocity span exhibits a significant peak
(p-value < 0.01) at P = 51.5 days. However, the peak power
is reduced to below the level of p-value = 0.1 when the data
are detrended to account for the long-term evolution. Addition-
ally, no equivalent peak is seen in the inactive period. Although
this seems worrisome at first sight, the 51.6-day signal is present
in the RV data set, even after the long-term e↵ect has been re-
moved. We therefore believe that the fourth Keplerian signal is
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Stellar noise increases with activity level.
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• Hypotheses: Hn: “there are n planets in the HD40307 
system.”

• Physical model: n Keplerians. No interactions.
• Long term drift: polynomial fit to R’HK used as prior. Linearity 

assumed.
• Noise model: Evolving stellar jitter, to consider activity 

increase.

• Likelihood: normally distributed independent errors.
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Díaz, et al. (in prep, 2015)

Bayesian analysis of HD40307 
Díaz, et al. (2016a)



Short-term activity “jitter” (including 
instrumental noise). “Complex physics”; 
modelled statistically.

i.e., the “jitter” increases with activity.

Independent Gaussian 
measurements errors 
assumed.

Number of parameters: 
5 j + (1-3) + 1 + (3 | 5) + 2

Parameter posterior PDF sampled using a 
MCMC + adaptive PCA algorithm (details in Díaz

+2014. Starting point obtained using Genetic 
Algorithm.

Planets and 
non-“jitter” activity 

(rotational 
modulation).

Drifts (degree l).

Activity cycles modelled as 
polynomial or Keplerian, using 
priors based on logR’hk, and a 
scale factor.
a(ti) = ↵ · P logR0

HK
3

(ti)

a(ti) = ↵0 · k
logR0

HK
(ti)

RV at ti measured 
by instrument k

The model

v(k)i = �k +
nX

j=1

kj(ti) + pl(ti) + a(ti) + ✏(k)i
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Appendix A: Parameter priors

Table A.1. Parameter prior distributions for the HD 1461 system.

Prior distribution
Orbital parameters Planet b / c Magnetic cycle?

Orbital period, P [days] J(1.0, 104) N(3522.4, 75.4)
RV amplitude, K [m s�1] U(0.0, 200) U(0.0, 200)
Eccentricity, e B(0.867, 3.03) –
Argument of periastron, ! [deg] U(0.0, 360.0) –
e1/2 sin(!) – N(�0.388, 0.078)
e1/2 cos(!) – N(0.129, 0.096)
Mean longitude at epoch, L0 [deg] U(0.0, 360.0) N(124.0, 21.0)
Systemic velocity, V0 [km s�1] U(�10.061,�10.055)

Noise model‡

Additional noise at log (R0HK)= – 5, �J |�5.0 [m s�1] U(0, 50)
Slope, ↵J [m s�1/dex] U(�200, 200)

Notes. The epoch is BJD = 2 455 155.3854 for planets b and c and BJD = 2 455 195.8367 for the magnetic cycle. U(xmin; xmax): uniform distribution
between xmin and xmax. J(xmin; xmax): Je↵reys (log-flat) distribution between xmin and xmax. N(µ;�): normal distribution with mean µ and standard
deviation �. B(a, b): beta distribution. (?) See Sect. 4.3. (‡) the additional (stellar) noise for measurement i is �Ji = �J|�5.0 + ↵J · (log (R0HK)i + 5.0).

Table A.2. Prior distributions for the HD 40307 system.

Orbital parameters Prior distribution

Orbital period, P [days] J(1.0, 104)
RV amplitude, K [m s�1] U(0.0, 200)
Eccentricity, e B(0.867, 3.03)
Argument of periastron, ! [deg] U(0, 360)
Mean longitude at epoch, L0 [deg] U(0, 360)
Systemic velocity, V0 [km s�1] U(28.996, 33.668)

Velocity drift (long-term activity e↵ect)?

Scaling constant, ↵ [ m s�1/dex] U(0, 100)
Linear [10�4 dex yr�1] N(373.8, 8.6)
Quadratic [10�4 dex yr�2] N(46.3, 4.6)
Cubic [10�4 dex yr�3] N(�17.3, 1.0)

Noise model‡

Additional noise at log (R0HK)= –5, �J |�5.0 [m s�1] U(0, 50)
Slope, ↵J [m s�1/dex] U(0, 50)

Notes. Priors are identical for all signals in the model. The epoch is BJD = 2 454 521.6791. The argument of periastron ! is unconstrained for
these nearly-circular orbits. U(xmin; xmax): uniform distribution between xmin and xmax. J(xmin; xmax): Je↵reys (log-flat) distribution between xmin
and xmax. N(µ;�): normal distribution with mean µ and standard deviation �. B(a, b): beta distribution. (?) See Sect. 4.3. (‡) The additional (stellar)
noise for measurement i is �Ji = �J|�5.0 + ↵J · (log (R0HK)i + 5.0).

Table A.3. Parameter prior distributions for the HD 204313 system.

Prior distribution
Orbital parameters Planet b Planet c

Orbital period, P [days] N(2046.3, 9.1) N(34.989, 0.033)
RV amplitude, K [m s�1] N(66.9, 1.3) N(4.9, 1.0)
Eccentricity, e N(0.125, 0.017) B(0.93, 5.5)
Argument of periastron, ! [deg] N(303.0, 8.3) U(0, 360)
Mean longitude at epoch, L0 [deg] N(109.10, 0.91) N(35.6, 15.0)
Systemic velocity, V0 [km s�1] U(�9, 762,�9.697)

Velocity drift (long-term activity e↵ect)?

Scaling constant, ↵ [m s�1/dex] U(0, 300)
Linear [10�2 dex yr�1] N(�1.02, 0.13)
Quadratic [10�4 dex yr�2] N(�5.5, 2.5)
Cubic [10�4 dex yr�3] N(3.68, 0.92)

Noise model‡

Additional noise at log (R0HK) = – 5, �J |�5.0 [m s�1] U(0, 50)
Slope, ↵J [m s�1/dex] U(�200, 200)

Notes. The epoch is BJD = 2 454 993.84858. U(xmin; xmax): uniform distribution between xmin and xmax. N(µ;�): normal distribution with mean µ
and standard deviation �. B(a, b): beta distribution. (?) See Sect. 4.3. (‡) The additional (stellar) noise for measurement i is �Ji = �J|�5.0 + ↵J ·
(log (R0HK)i + 5.0).
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p(Hi+1|D, I)

p(Hi|D, I)
for i = 0, 1, …, N

KR95: Kass & Raftery (1995)
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Fig. 17. Radial velocity data phase-folded to the best-fit period of each of the four Keplerian curves used in the final modelling of HD 40307 after
subtracting the e↵ect of the remaining signals and the long-term drift. The error bars include the additional noise term (see text). The inactive data
set is plotted using filled red circles, while for the active data set we chose lighter empty circles. This promptly shows that the dispersion around
the model is largely caused by the active data set. The blue lines represent the 95-% highest density interval (HDI).
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Fig. 18. HD 40307. Window function around the one-year alias
(0.00273 cycles/day) for the data set used by T13 (solid curve), con-
sisting of the inactive data set plus a few points taken during commis-
sioning. The corresponding spectral window function for the data set
analysed here is shown as a dotted curve. The frequency corresponding
to 236 days is indicated by the vertical dashed line.

after the upgrade were modelled as if they had been taken by dif-
ferent instruments7. The data span 13 yr and contain 215 points.
The weighted mean error of the measurements is 63 cm s�1. Two
HARPS data points (BJD = 2 453 951 and BJD = 2 456 468)
were discarded because they had an unusually low signal-to-
noise ratio or exhibited an anomalous CCF (high contrast), prob-
ably linked to an incorrect background correction. The data are
presented in Table 10.

The RV time series are plotted in Fig. 19. The variability pro-
duced by the planet first reported by Ségransan et al. (2010) is
clearly seen by eye. When the data are blindly searched for sig-
nals using the GA, a 2050-day nearly circular orbit is found, that
is, a period slightly longer than originally reported, but in agree-
ment with the findings of Robertson et al. (2012) and Mayor
et al. (2011).

7 The instrument is referred to as CORALIE98 before the upgrade and
CORALIE07 after the upgrade.

7.1. Two-Keplerian model. A Neptune-mass object
on a 35-day period orbit

The residuals of the one-Keplerian model show a sharp sig-
nificant peak at 34.9-days and an additional trend with uncon-
strained period (Fig. 19). The signal at 34.9 days corresponds
to the Neptune-mass planet announced by Mayor et al. (2011),
whose full discovery report is given here. The detection of this
signal is solely due to the HARPS data. Indeed, without the
93 HARPS measurements, the GLS periodogram of the resid-
uals to the one-Keplerian model does not exhibit any significant
peak (Fig. 19)8. The other instruments are useful for constrain-
ing the period of the massive outer planet, but contribute only
negligibly to the identification of this new planet candidate.

The estimates of the rotational period based on Noyes et al.
(1984) and Mamajek & Hillenbrand (2008) are around 32 days,
which is close to the frequency of the signal at 34.9 days.
However, the log (R0HK) time series does not exhibit any remain-
ing significant peak after the long-term activity evolution is cor-
rected for (Fig. 21, top panel). The same is true for the bisector
velocity span (Fig. 21, middle panel), whose dispersion after de-
trending is 1.5 m s�1. The GLS periodogram of the FWHM does
show a peak that could correspond to the rotational period of the
star (at period P = 29.5 days; Fig. 21, lower panel). However, its
significance is below the 1%-level. These facts, together with the
general inactive state of the star and the relatively large ampli-
tude of the 34.9-day signal detected in the RV lead us to conclude
that it is most likely planetary in origin.

The long-term trend is still seen in the residuals of the two-
Keplerian model. It is also detected exclusively in the HARPS
data. As for HD 1461 and HD 40307, a similar trend is also
observable in the HARPS log (R0HK), line bisector, and CCF
FWHM (Fig. 20). Once again we are led to conclude that the
trend is produced by a change in the activity level of the star
in the past ten years. No cyclic behaviour is detected so far,
and we therefore decided, as for HD 40307, to model this ef-
fect using a third-degree polynomial. We note that the RV vari-
ation in the past ten years is about 10 m s�1, which is sim-
ilar to the dispersion around the one-Keplerian model for the
CORALIE and McDonald data. This explains why the activity
trend is detected solely by HARPS. Unlike HD 40307, the active
and inactive periods of the target are sampled very di↵erently,
with only 28 measurements after 2011, the period that could be

8 When a two-Keplerian model is fitted to the data from instruments
other than HARPS, an RV amplitude significantly di↵erent from zero is
found for the signal at 34.9 days. This does not mean, however, that the
detection is significant. See discussion below.
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Fig. 17. Radial velocity data phase-folded to the best-fit period of each of the four Keplerian curves used in the final modelling of HD 40307 after
subtracting the e↵ect of the remaining signals and the long-term drift. The error bars include the additional noise term (see text). The inactive data
set is plotted using filled red circles, while for the active data set we chose lighter empty circles. This promptly shows that the dispersion around
the model is largely caused by the active data set. The blue lines represent the 95-% highest density interval (HDI).
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Fig. 18. HD 40307. Window function around the one-year alias
(0.00273 cycles/day) for the data set used by T13 (solid curve), con-
sisting of the inactive data set plus a few points taken during commis-
sioning. The corresponding spectral window function for the data set
analysed here is shown as a dotted curve. The frequency corresponding
to 236 days is indicated by the vertical dashed line.

after the upgrade were modelled as if they had been taken by dif-
ferent instruments7. The data span 13 yr and contain 215 points.
The weighted mean error of the measurements is 63 cm s�1. Two
HARPS data points (BJD = 2 453 951 and BJD = 2 456 468)
were discarded because they had an unusually low signal-to-
noise ratio or exhibited an anomalous CCF (high contrast), prob-
ably linked to an incorrect background correction. The data are
presented in Table 10.

The RV time series are plotted in Fig. 19. The variability pro-
duced by the planet first reported by Ségransan et al. (2010) is
clearly seen by eye. When the data are blindly searched for sig-
nals using the GA, a 2050-day nearly circular orbit is found, that
is, a period slightly longer than originally reported, but in agree-
ment with the findings of Robertson et al. (2012) and Mayor
et al. (2011).

7 The instrument is referred to as CORALIE98 before the upgrade and
CORALIE07 after the upgrade.

7.1. Two-Keplerian model. A Neptune-mass object
on a 35-day period orbit

The residuals of the one-Keplerian model show a sharp sig-
nificant peak at 34.9-days and an additional trend with uncon-
strained period (Fig. 19). The signal at 34.9 days corresponds
to the Neptune-mass planet announced by Mayor et al. (2011),
whose full discovery report is given here. The detection of this
signal is solely due to the HARPS data. Indeed, without the
93 HARPS measurements, the GLS periodogram of the resid-
uals to the one-Keplerian model does not exhibit any significant
peak (Fig. 19)8. The other instruments are useful for constrain-
ing the period of the massive outer planet, but contribute only
negligibly to the identification of this new planet candidate.

The estimates of the rotational period based on Noyes et al.
(1984) and Mamajek & Hillenbrand (2008) are around 32 days,
which is close to the frequency of the signal at 34.9 days.
However, the log (R0HK) time series does not exhibit any remain-
ing significant peak after the long-term activity evolution is cor-
rected for (Fig. 21, top panel). The same is true for the bisector
velocity span (Fig. 21, middle panel), whose dispersion after de-
trending is 1.5 m s�1. The GLS periodogram of the FWHM does
show a peak that could correspond to the rotational period of the
star (at period P = 29.5 days; Fig. 21, lower panel). However, its
significance is below the 1%-level. These facts, together with the
general inactive state of the star and the relatively large ampli-
tude of the 34.9-day signal detected in the RV lead us to conclude
that it is most likely planetary in origin.

The long-term trend is still seen in the residuals of the two-
Keplerian model. It is also detected exclusively in the HARPS
data. As for HD 1461 and HD 40307, a similar trend is also
observable in the HARPS log (R0HK), line bisector, and CCF
FWHM (Fig. 20). Once again we are led to conclude that the
trend is produced by a change in the activity level of the star
in the past ten years. No cyclic behaviour is detected so far,
and we therefore decided, as for HD 40307, to model this ef-
fect using a third-degree polynomial. We note that the RV vari-
ation in the past ten years is about 10 m s�1, which is sim-
ilar to the dispersion around the one-Keplerian model for the
CORALIE and McDonald data. This explains why the activity
trend is detected solely by HARPS. Unlike HD 40307, the active
and inactive periods of the target are sampled very di↵erently,
with only 28 measurements after 2011, the period that could be

8 When a two-Keplerian model is fitted to the data from instruments
other than HARPS, an RV amplitude significantly di↵erent from zero is
found for the signal at 34.9 days. This does not mean, however, that the
detection is significant. See discussion below.
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Fig. 9. Upper panel: HARPS time series of HD 40307. For log (R0HK),
the empty circles are the data included in M09, and have hlog (R0HK)i =
�4.99. The filled circles are the new data presented here, with
hlog (R0HK)i = �4.87. The vertical dashed line separates the active
(BJD < 2 454 800) from the inactive data set. Lower panel: correspond-
ing GLS periodograms for periods longer than 400 days. The vertical
dotted lines represent the time span of observations and twice this value.

probably due to the e↵ect of activity at a similar period. Indeed,
a significant peak appears at P = 21.4 days in the bisector time
series (Fig. 11) when the long-term trend is corrected. However,
when a least-squares fit is performed on each observing sea-
son individually, the amplitude of the bisector signal is seen to
anti-correlate with the one in the RVs. The bisector amplitude
varies from below 50 cm s�1 during the first three seasons to
around 2.5 m s�1 when the activity increases. If the signal in the
RV data were produced by magnetic activity, we would expect
a correlation to exist between its amplitude and that of the bi-
sector signal. The fact that an anti-correlation is seen indicates
that the activity signal is scrambling the signal seen in the RV,
but does not cast doubt on its interpretation as a planetary com-
panion. Otherwise, the amplitude and eccentricity distributions
of the three companions are compatible in all models. The base-
level additional noise is below 1 m s�1 for all models with at
least three signals (Fig. 12), illustrating the high precision of
HARPS. As the level of complexity of the model increases, the
needed additional noise level decreases. For the five- and six-
signal models, the noise level is around 60 cm s�1. On the other
hand, the models with a weaker base-level jitter have a higher
sensitivity to log (R0HK), that is, a larger slope parameter.
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Fig. 10. Periodogram of the RV data of HD 40307 (top panel), and of
the residuals around models with three (second from top), four (second
from bottom), and five (bottom) Keplerian signals in addition to a cubic
function to take into account the long-term trend produced by the mag-
netic cycle of the star. The horizontal dotted and dashed lines represent
the 10% and 1% false alarm probability levels, respectively.

6.1. Four-Keplerian model. A super-Earth companion
on a 51.6-day period orbit

A 51.6-day period signal appears as significant when the model
with three Keplerian signals and a degree-three polynomial is
subtracted (Fig. 10). Given that a long-term signal was sub-
tracted, particular care should be given to the spectral window:
as seen for HD 1461, if the signal is not correctly corrected for
and some power remains at very long periods, peaks will ap-
pear at the frequencies present in the spectral window function.
In this case, no peak is present at frequencies corresponding
to ⇠51 days in the window function of the HD 40307 data. The
51.6-day signal has an amplitude of 75 cm s�1. All models with
at least four Keplerians converge to a period of P ⇠ 51.6 days,
with an eccentricity distribution that in all cases is compatible
with a circular orbit. Its amplitude, however, depends mildly on
the model (Fig. 13). In the model with four signals, the ampli-
tude is around 75 cm s�1, while in more complex models the
amplitude is closer to 85–90 cm s�1.
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k=5; a five-planet model (one in the HZ)

0.0 0.2 0.4 0.6 0.8

Orbital phase

-6

-4

-2

0

2

4

6

R
V

[m
s�
1
]

Planet b; P = 4.312 d

0.0 0.2 0.4 0.6 0.8

Orbital phase

Planet c; P = 9.622 d

0.0 0.2 0.4 0.6 0.8

Orbital phase

Planet d; P = 20.417 d

0.0 0.2 0.4 0.6 0.8

Orbital phase

Planet f; P = 51.572 d

0.0 0.2 0.4 0.6 0.8

Orbital phase

Planet g; P = 205.197 d

Orbital phase



Díaz et al. (2016a)

k=5; a five-planet model (one in the HZ)
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