Una rendija

Ejercicio 1: Considere la intensidad observada sobre una pantalla para el caso de una onda que atraviesa una única ranura de ancho *a*

$$I = I_0 \frac{\sin^2(k \, a \sin(\theta)/2)}{(k \, a \sin(\theta)/2)^2}$$

y explique el significado de cada uno de los factores, variables, y parámetros que aparecen en dicha expresión.

Ejercicio 2: Una luz láser de helio-neón $\lambda=633nm$ se envía a través de una sola rendija de ancho a=0.3mm. ¿Cuál es el ancho del máximo central, es decir, la distancia entre los dos mínimos a sus lados, sobre una pantalla que está a una distancia L=1m de la rendija? Respuesta: $\Delta x=4.22mm$

Ejercicio 3: Una pantalla se coloca a L=50cm de una sola rendija, la cual está iluminada por una luz monocromática de longitud de onda $\lambda=690nm$. Si la distancia entre el primer y el tercer mínimo del patrón de difracción es igual a $\delta x_{13}=3mm$, ¿cuál es el ancho a de la rendija? Respuesta: a=0.23mm

Ejercicio 4: Una onda plana de longitud de onda $\lambda = 546nm$ inciden normalmente en una rendija que tiene detrás una lente de f = 40cm de distancia focal. Si el ancho de la rendija es de a = 0,45mm

- a. Encuentre la distancia entre el máximo principal y el primer mínimo de la figura de difracción formada en el plano focal de la lente.
- b. Encuentre la distancia entre el máximo principal y el primer máximo secundario.

Respuesta: $\delta y_{max-min} = 0.485mm$, $\delta y_{max-max} = 0.728mm$

Dos rendijas

Ejercicio 5: Considere la intensidad observada sobre una pantalla para el caso de una onda que atraviesa una placa opaca con dos ranuras de ancho *a*, cuyos centros están separados una distancia *d*

$$I = I_0 4 \frac{\sin^2(k \, a \sin(\theta)/2)}{(k \, a \sin(\theta)/2)^2} \cos^2\left(\frac{k \, d \, \sin(\theta)}{2}\right)$$

y explique el significado de cada uno de los factores, variables, y parámetros que aparecen en dicha expresión.

Ejercicio 6: Sobre dos ranuras de Young separadas una distancia d=1mm incide la superposición de dos ondas planas monocromáticas de longitudes de onda λ_1 y λ_2 .

- a. ¿Qué relación debe satisfacer el cociente λ_1/λ_2 para que el tercer orden de interferencia constructiva de la onda de longitud λ_1 coincida con el tercer mínimo de λ_2 ?
- b. ¿Qué ancho deben tener las ranuras para que además, esos órdenes coincidan con el primer mínimo de difracción de la onda de longitud λ_1 ? ¿Qué intensidad se registrará en la pantalla en ese punto?

Respuesta: $a \cdot \lambda_1 / \lambda_2 = 5/4$, b. a = d/2

Redes

Ejercicio 7: Una red de difracción tiene 1965 líneas/cm y se observa un máximo en $\theta = 30^{\circ}$. ¿Cuáles pueden ser las longitudes de onda de la luz incidente?

Ejercicio 8:

- a. Se tiene una red de difracción con 600 líneas/cm. Si un haz de rayos paralelos con luz de longitudes de onda $\lambda_1 = 500 nm$ y $\lambda_2 = 550 nm$ incide normalmente sobre la red, ¿cuál será la separación angular de los primeros y segundos máximos para cada longitud de onda?
- b. Una red de difracción tiene 3200 ranuras/cm. ¿Para qué longitudes de onda del espectro visible es posible observar difracción de quinto orden?

Ejercicio 9: Un haz de luz formado por longitudes de onda λ_1 y λ_2 , con $\lambda_1 > \lambda_2$, incide normalmente sobre una red de difracción de N líneas por cm. El máximo de primer orden aparece, para la onda de longitud λ_1 , en $\theta_1^{(1)} = 14.12^\circ$ mientras que el máximo de tercer orden se encuentra, para la onda de longitud λ_2 , en $\theta_2^{(3)} = 40.40^\circ$. Si $\lambda_2 = 540$ nm hallar:

- a. λ_1 y N
- b. La diferencia angular $\delta\theta=\theta_1-\theta_2$ para el primer orden.
- c. El orden máximo visible para λ_1 y λ_1 .

Respuesta: N=1374, $\lambda_1=571nm$, $\delta\theta^{(1)}=0.76^\circ$, $n_1^{\max}=12$, $n_2^{\max}=13$

Ejercicio 10: Resolución de longitudes de onda Se ilumina una red de difracción de longitud I=4cm y 800 líneas con una lámpara que emite luz de longitudes de onda de $\lambda_1=560nm$, $\lambda_2=560.05nm$.

- a. ¿A partir de qué orden se resuelven las dos longitudes de onda?
- b. ¿Es ese orden observable?
- c. ¿Sería posible, con esta red, distinguir dos longitudes de onda $\lambda_1=560nm$ y $\lambda_2'=560.005nm$?

Respuesta: n = 14