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Campo de una distribución esférica de carga

• Supongamos una distribución de 
carga 𝜌 como la de la figura.
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Looking back over our proof, we see that it hinged on the 
inverse-square nature of the interaction and of course on the additivity 
of interactions, or superposition. Thus the theorem is applicable to any 
inverse-square field in physics, for instance. to the gravitational field. 

It is easy to see that Gauss's law would nor hold if the law of 
force were. say. inverse-cube. For in that case the flux of electric field 
from a point charge q through a sphere of radius R centered on the 
charge would be 

By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
constant. 

This remarkable theorem enlarges our grasp in two ways. First. 
it reveals a connection between the field and its sources that is the 
converse of Coulomb's Iaw. Coulomb's law tells us how to derive the 
electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 

FIELD OF A SPHERICAL CHARGE DISTRIBUTION 
1.1 1 We can use Gauss's law to find the electric field of a spheri- 
cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 

FIGURE 1.18 
A charge distribution with spher~cd symmetry 

FIGURE 1mlO 
The electric Celd of a spheriml charge distribution 
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𝑐𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆(

𝜖$

𝐸( =
𝑐𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆(

4𝜋𝑟(1𝜖$

Es como si toda la carga dentro de S1
estuviese concentrada en el origen

Sirve para 
todo 𝑟( > 𝑟$
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Looking back over our proof, we see that it hinged on the 
inverse-square nature of the interaction and of course on the additivity 
of interactions, or superposition. Thus the theorem is applicable to any 
inverse-square field in physics, for instance. to the gravitational field. 

It is easy to see that Gauss's law would nor hold if the law of 
force were. say. inverse-cube. For in that case the flux of electric field 
from a point charge q through a sphere of radius R centered on the 
charge would be 

By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
constant. 

This remarkable theorem enlarges our grasp in two ways. First. 
it reveals a connection between the field and its sources that is the 
converse of Coulomb's Iaw. Coulomb's law tells us how to derive the 
electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 

FIELD OF A SPHERICAL CHARGE DISTRIBUTION 
1.1 1 We can use Gauss's law to find the electric field of a spheri- 
cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 

FIGURE 1.18 
A charge distribution with spher~cd symmetry 

FIGURE 1mlO 
The electric Celd of a spheriml charge distribution 



Campo de una distribución esférica de carga

• Análogamente, si 𝐸1 es el módulo del 
campo sobre la esfera 𝑆1 de radio 𝑟1

𝐸1 =
𝑐𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆1
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Campo de una distribución esférica de carga

• Análogamente, si 𝐸1 es el módulo del 
campo sobre la esfera 𝑆1 de radio 𝑟1

• Depende de cuánta carga encierre 𝑆1

𝐸1 =
𝑐𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆1
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𝐶𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆1 = <𝜌 𝑑𝑉
Volumen 
encerrado
Por S2
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Campo de una distribución esférica de carga

• Análogamente, si 𝐸1 es el módulo del 
campo sobre la esfera 𝑆1 de radio 𝑟1

• Depende de cuánta carga encierre 𝑆1

• No depende de la carga fuera de S2 !

𝐸1 =
𝑐𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆1
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𝐶𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆1 = <𝜌 𝑑𝑉
Volumen 
encerrado
Por S2
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Diferencia de Potencial y 
función potencial en 

electrostática



Integral de línea del campo

• Vimos antes el trabajo de la 
fuerza electrostática. 
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Integral de línea del campo

• Vimos antes el trabajo de la 
fuerza electrostática. 

• Ahora nos interesa ver la integral 
de camino de un campo 𝐸 entre 
dos puntos P1 y P2.

<
>?

>@
𝐸 , 𝑑𝑠

P2

P1

𝐸

𝑑𝑠

Ca
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𝐶



Diferencia de potencial entre dos puntos

• La diferencia de potencial entre P1 y P2 se define como:

𝜑1( = −∫>?
>@ 𝐸 , 𝑑𝑠

• En campos electrostáticos, esta integral de línea no depende del 
camino y sólo de las posiciones de P1 y P2 :

−<
>?

>@
𝐸 , 𝑑𝑠 = 𝜑 𝑟>1 − 𝜑 𝑟>(

𝐶
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FIGURE 2.2 
The electric field E is that of a positive point charge p. 
The line integral of E from PI to P, along path A has 
the value dl Ir, - Ilr2). It w~ll have exactly the same 
value if calculated for path 5, or for any other path 
from P, to 4. 

fields calculated separately. Or, stated more carefully, if E = El + 
E2 + - . . . then 

E -  ti^ = Ip:~l . d~ + Jp:4 -  ti^ + - - - (3) 

where the same path is used for all the integrations. Now any electre 
static field can be regarded as the sum of a number (possibly enor- 
mous) of pointaharge fields, as expressed in Eq. 1.14 or 1.15. There- 
fore if the line integral from PI to P2 is independent of path for each 
of the pointxharge fields El. E2, . . . . the total field E must have this 
property: 

The line integral E - ds for any electrostatic I," 
field E has the same value for all paths from P, to 
f'2 

Ejemplo: carga puntual

• Supongamos que el campo viene 
de una carga puntual 𝑞.

𝐸(𝑟) =
1

4𝜋𝜖$
𝑞
𝑟1 �̂�

• Por el Camino A (camino radial 
desde r1 a r2 + un arco a r2) la 
integral entre P1 y P2 da:

• ∫>?
>@ 𝐸 , 𝑑𝑠 = ∫𝐸 , 𝑑𝑠 + ∫𝐸 , 𝑑𝑠

Camino A
Camino 
radial

Arco

Son perpendiculares!
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FIGURE 2.2 
The electric field E is that of a positive point charge p. 
The line integral of E from PI to P, along path A has 
the value dl Ir, - Ilr2). It w~ll have exactly the same 
value if calculated for path 5, or for any other path 
from P, to 4. 
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mous) of pointaharge fields, as expressed in Eq. 1.14 or 1.15. There- 
fore if the line integral from PI to P2 is independent of path for each 
of the pointxharge fields El. E2, . . . . the total field E must have this 
property: 

The line integral E - ds for any electrostatic I," 
field E has the same value for all paths from P, to 
f'2 

Ejemplo: carga puntual

• Por el Camino A (camino radial 
desde r1 a r2 + un arco a r2) la 
integral entre P1 y P2 da 𝑑𝑠 =
𝑑𝑟 �̂� :

<
>?

>@
𝐸 , 𝑑𝑠 = <

H?

H@ 1
4𝜋𝜖$

𝑞
𝑟1
𝑑𝑟

<
>?

>@
𝐸 , 𝑑𝑠 =

𝑞
4𝜋𝜖$

1
𝑟(
−
1
𝑟1

Camino A

Camino A



Ejemplo: carga puntual

• Entonces la diferencia de potencial entre dos puntos 𝑃( y 𝑃1 es para 
este caso:

𝜑1( = −<
>?

>@
𝐸 , 𝑑𝑠 =

𝑞
4𝜋𝜖$

1
𝑟1
−
1
𝑟(

• Se puede definir una función potencial 𝜙(𝑟) si coloco un potencial de 
referencia común para todo el sistema. Podemos hacerlo en 𝑟( = ∞
(muy lejos de la distribución) con lo cual:

𝜑 𝑟 = −<
L

H
𝐸 , 𝑑𝑠 =

𝑞
4𝜋𝜖$

1
𝑟



Superficies equipotenciales

• Se llama equipotencial al conjunto de puntos del espacio que tienen 
el mismo valor de la función potencial. 

• ¿Qué forma tiene una equipotencial para el caso que acabamos de 
ver? 





Gradiente del potencial

• Dada una función 𝑓(𝑥, 𝑦, 𝑧) derivable, el 
vector gradiente ∇𝑓 nos da la dirección de 
mayor crecimiento de la función 𝑓 en el 
punto (𝑥, 𝑦, 𝑧).

• En cartesianas 

∇𝑓(𝑥, 𝑦, 𝑧) =
𝜕𝑓
𝜕𝑥 T𝑥 +

𝜕𝑓
𝜕𝑦 T𝑦 +

𝜕𝑓
𝜕𝑧 �̂�

the function is a vector in that direction of steepest ascent, and its 
magnitude is the slope measured in that direction. 

Figure 2.4 may help you to visualize this. Suppose some partic- 
ular function OF two coordinates x and y is represented by the surface 
f ( x ,  y )  sketched in Fig. 2.4~.  At the location (xi, y,) the surface rises 
most steeply in a direction that makes an angle of about 80' with the 
positive x direction. The gradient off (x, y), VA is a vector function 
of x and y. Its character is suggested in Fig. 2.4bmby a number of 
vectors at various points in the twodimensional space, including the 
point (xl, yl). The vector function Vf defined in Eq. 10 is simply an 
extension of this idea to three-dimensional space. [Be careful not to 

FlCURR 2.4 
The scalar function fix, yyl is represented by the surTace 
in (a). The arrows in (b) represent the vector function. 
grad f- 



Gradiente del potencial y campo eléctrico

• La variación de la función potencial en un punto (𝑥, 𝑦, 𝑧) viene dada 
por

𝑑𝜑 =
𝜕𝜑
𝜕𝑥

𝑑𝑥 +
𝜕𝜑
𝜕𝑦

𝑑𝑦 +
𝜕𝜑
𝜕𝑧

𝑑𝑧

• Por otro lado, sabemos que: 
𝑑𝜑 = −𝐸 , 𝑑𝑠

donde 𝑑𝑠 es el diferencial de camino
𝑑𝑠 = 𝑑𝑥 T𝑥 + 𝑑𝑦 T𝑦 + 𝑑𝑧 �̂�

• Entonces esto implica que: 
𝐸 = −∇𝜑

En electrostática, el campo eléctrico es conservativo y se define como menos el gradiente del potencial



Potencial de una distribución 
(acotada) de cargas



Diferencia de potencial para N cargas

• De manera análoga, para un sistema de N cargas q1…qN  y por el 
principio de superposición.

𝜑1( = −<
>?

>@
𝐸 , 𝑑𝑠 = −<

>?

>@
𝐸( + 𝐸1 +⋯+ 𝐸W , 𝑑𝑠

= −<
>?

>@
𝐸( , 𝑑𝑠 − <

>?

>@
𝐸1 , 𝑑𝑠 −⋯−<

>?

>@
𝐸W , 𝑑𝑠

• Centrándonos en cada carga:

𝜑1( =
1

4𝜋𝜖$
X
YZ(

W

𝑞Y
1
𝑟1Y

−
1
𝑟(Y

𝑟(Y: distancia de 𝑞Y a P1
𝑟1Y: distancia de 𝑞Y a P2



Función potencial para N cargas

• Si la distribución es acotada en el espacio puedo poner como punto 
de potencial cero el infinito y entonces

𝜙(𝑟(, … , 𝑟W) =
1

4𝜋𝜖$
X
YZ(

W
𝑞Y
𝑟Y

𝑟Y: distancia desde cada 𝑞Y al 
punto de evaluación del 

potencial





Potencial de una distribución contínua y 
acotada de carga
• Por estar el campo electrostático y el potencial relacionados por un 

gradiente, que es un operador lineal, el principio de superposición 
vale también para la función potencial siempre y cuando tengan el 
mismo potencial de referencia. 

• Si la distribución de cargas es acotada en el espacio, es conveniente 
poner el potencial de referencia muy lejos (r=∞) y con valor cero.

• Eso hacemos cuando calculamos el potencial de una carga al traer 
otra desde el infinito



Potencial de una distribución contínua y 
acotada de carga

• La contribución de un pedacito de carga 
𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑥\𝑑𝑦\𝑑𝑧′ al potencial en 𝑥, 𝑦, 𝑧 es:

𝑑𝜙(𝑥, 𝑦, 𝑧) =
1

4𝜋𝜖$

𝑑𝑞 𝑥\, 𝑦\, 𝑧\

(𝑥 − 𝑥\)1+(𝑦 − 𝑦′)1+(𝑧 − 𝑧\)1

𝑑𝜙(𝑥, 𝑦, 𝑧) 𝑑𝑞(𝑥′, 𝑦′, 𝑧′)

(𝑥 − 𝑥\)1+(𝑦 − 𝑦′)1+(𝑧 − 𝑧\)1

𝑟′

𝑟



Potencial de una distribución contínua y 
acotada de carga

• La contribución de un pedacito de carga 
𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑥\𝑑𝑦\𝑑𝑧′ al potencial en 𝑥, 𝑦, 𝑧 es:

𝑑𝜙(𝑥, 𝑦, 𝑧) =
1

4𝜋𝜖$

𝑑𝑞 𝑥\, 𝑦\, 𝑧\

(𝑥 − 𝑥\)1+(𝑦 − 𝑦′)1+(𝑧 − 𝑧\)1

• Integrando sobre todo el volumen de la carga y 
tomando el potencial cero en el infinito:

𝜙(𝑥, 𝑦, 𝑧) =
1

4𝜋𝜖$
<

𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑥\𝑑𝑦\𝑑𝑧′

(𝑥 − 𝑥\)1+(𝑦 − 𝑦′)1+(𝑧 − 𝑧\)1

𝑑𝜙(𝑥, 𝑦, 𝑧) 𝑑𝑞(𝑥′, 𝑦′, 𝑧′)

(𝑥 − 𝑥\)1+(𝑦 − 𝑦′)1+(𝑧 − 𝑧\)1

𝑟′

𝑟



Ejemplo: disco cargado uniformemente

• Distribución acotada ✓
• Radio a
• Grosor despreciable
• 𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 ( `

a@)
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This shows that the electrical potential for the charged wire can be 
taken as 

The constant, 2X In r, in this case, has no effect when we take 
-grad p to get back to the field E. In this case 

UNIFORMLY CHARGED DIK 
2.6 Let us study, as a concrete example, the electric potential and 
field around a uniformly charged disk. This is a charge distribution 
like that discussed in Section 1.13, except that it has a limited extent. 
The flat disk of radius a in Fig. 2.8 carries a positive charge spread 
over its surface with the constant density 0, in esu/cm2. (This is a 
single sheet of charge of infinitesimal thickness, not two layers 
of charge. one on each side. That is, the total charge in the system is 
aa20.) We shall often meet surface charge distributions in the future, 
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Ejemplo: disco cargado uniformemente

• Distribución acotada ✓
• Radio a
• Grosor despreciable
• 𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 ( `

a@)

• Calculemos el potencial en el punto P1
sobre el eje de simetría y.

𝑑𝑞 = 𝜎 𝑑𝐴
𝑑𝐴 = 2𝜋𝑠 𝑑𝑠

(𝑑𝐴 área de un anillo de 
radio 𝑠 y ancho 𝑑𝑠).
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Ejemplo: disco cargado uniformemente

• La distancia del anillo al 𝑃( 0, 𝑦, 0 es:
𝑦1 + 𝑠1

• Poniendo el cero de potencial en el 
infinito

𝜙 𝑦 =
1

4𝜋𝜖$
<

𝑑𝑞
𝑦1 + 𝑠1
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• La distancia del anillo al 𝑃( 0, 𝑦, 0 es:
𝑦1 + 𝑠1

• Poniendo el cero de potencial en el 
infinito

𝜑 𝑦 =
1

4𝜋𝜖$
<

𝑑𝑞
𝑦1 + 𝑠1

=
1

4𝜋𝜖$
<
$

e 𝜎 2𝜋𝑠 𝑑𝑠
𝑦1 + 𝑠1
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Ejemplo: disco cargado uniformemente

• La integral queda

𝜑 𝑦 =
𝜎
4𝜖$

<
$

e 2𝑠 𝑑𝑠
𝑦1 + 𝑠1

=

𝜑 𝑦 =
𝜎
4𝜖$

𝑦1 + 𝑎1 − 𝑦

El problema es simétrico respecto a y = 0
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Momentos de una distribución 
de carga



El potencial lejos de una distribución

• Volvamos al caso de un disco uniformemente cargado. El potencial a 
lo largo del eje de simetría daba:

𝜑 𝑦 =
𝜎
4𝜖$

𝑦1 + 𝑎1 − 𝑦

• Nos interesa saber a qué se parece el potencial a distancias grandes. 
Para |y| >> a podemos aproximar por serie de Taylor el término:



El potencial lejos de una distribución

• Reemplazando la aproximación, tenemos 

De lejos sólo se ve
una carga puntual

𝑞 = 𝜎𝜋𝑎1



Momentos de una distribución de carga

• Un átomo o molecula consta de cargas en disposiciones 
complejas en volúmenes del orden de 10-24 cm.

• ¿Qué aspectos de la estructura de la carga son los más 
importantes cuando vemos el potencial/campo a grandes 
distancias de las distribuciones de carga?



Momentos de una distribución de carga

• Supongamos una distribución de cargas 
acotada 𝜌 (𝑥′, 𝑦′, 𝑧′) y un punto 𝑟 exterior a 𝜌.

𝜑(𝑟) =
1

4𝜋𝜖$
<
𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑉′

𝑅

𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑉′

𝑅

• En negro, lo que no se integra
• En rojo, lo que sí se integra

𝑟′

𝑟



Momentos de una distribución de carga

• Supongamos una distribución de cargas 
acotada 𝜌 (𝑥′, 𝑦′, 𝑧′) y un punto 𝑟 exterior a 𝜌.

𝜑(𝑟) =
1

4𝜋𝜖$
<
𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑉′

𝑅

• Expresamos R en función de las distancias r y 
r’ desde el origen del sistema de 
coordenadas. Por el teorema del coseno

𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑉′

𝑅

• En negro, lo que no se integra
• En rojo, lo que sí se integra

𝜃 𝑟′

𝑟



Momentos de una distribución de carga

• La idea es ver qué pasa cuando r >> r’. 
Veamos un poco el factor 1/R: 𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑉′

𝑅

• En negro, lo que no se integra
• En rojo, lo que sí se integra

𝜃 𝑟′

𝑟



Momentos de una distribución de carga

• La idea es ver qué pasa cuando r >> r’. 
Veamos un poco el factor 1/R: 

• Podemos hacer el desarrollo en Taylor de 1/R 
para r’/r << 1. Tomando el desarrollo

para 𝛿 ≪ 1

𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑉′

𝑅

• En negro, lo que no se integra
• En rojo, lo que sí se integra

𝜃 𝑟′

𝑟



Momentos de una distribución de carga

• Tomando esta expansión el factor 1/R queda: 

• Entonces, reemplazando en 𝜑(𝑟)

𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑉′

𝑅

• En negro, lo que no se integra
• En rojo, lo que sí se integra

𝜃

más grande  >>>>>>>>>>> más chico

𝑟′

𝑟

𝜑(𝑟)



Momentos de una distribución de carga

• Entonces 𝜑(𝑟) lejos de la distribución puede escribirse como una serie de 
términos de importancia decreciente (fijarse el exponente de 1/r)

• La clave es calcular los coeficientes K0, K1, K2, etc. Cada término se denomina 
momento.

𝜑(𝑟)



Momentos de una distribución de carga

• Entonces 𝜑(𝑟) lejos de la distribución puede escribirse como una serie de 
términos de importancia decreciente (fijarse el exponente de 1/r)

• La clave es calcular los coeficientes K0, K1, K2, etc. Cada término se denomina 
momento.

𝜑(𝑟)

Las integrales se hacen sobre todo el volumen de la 

distrib
ución de cargas



Momentos de una distribución de carga

• ¿Hace falta calcular todos los Ki? 
• No! El comportamiento del potencial a grandes distancias de la fuente 

estará determinado por el primer término no nulo de la serie:

𝜑(𝑟)



Los coeficientes K0 y K1

• 𝐾$ = ∫𝜌 𝑑𝑣′ es 
simplemente la carga total 
de la distribución (da cero 
para moléculas y átomos 
neutros)
• ¿Cuánto vale K0 para en cada 

una de estas distribuciones ?



Los coeficientes K0 y K1

• Si 𝐾$ = 0, calcularemos 𝐾( = ∫𝑟\ cos 𝜃 𝜌 𝑑𝑣′

• Para simplificar esta expresión consideremos el vector 

�⃗� = <𝑟\ 𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑣′

• Usando �⃗�, tenemos:   �̂� , �⃗� = �̂� , ∫ 𝑟\ 𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑣\ =
∫ �̂� , 𝑟\ 𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑣\ = ∫ 𝑟′ cos 𝜃 𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑣\ = 𝐾(

• Por lo tanto:                        𝐾( = �̂� , �⃗�

Momento dipolar



Los coeficientes K0 y K1

• Resumiendo, para un punto A en dirección �̂� y a una 
distancia 𝑟 de una distribución acotada 𝜌 𝑥\, 𝑦\, 𝑧\ , el 
potencial viene dado por:

𝜑o =
𝑄
𝑟
+
�̂� , 𝑝
𝑟1

+
𝐾1
𝑟q
+ ⋯ .

• Donde 𝑄 = 𝐾$ = ∫𝜌 𝑑𝑣′ y    𝑝 = ∫ 𝑟\ 𝜌 𝑥\, 𝑦\, 𝑧\ 𝑑𝑣′



Ejemplo: Potencial lejano de un dipolo

• Dos cargas puntuales ±𝑞 en z = ±t
1

• 𝐾$ = 0

• Veamos 𝐾(. Para cargas puntuales

�⃗� =X
YZ(

W

𝑟′Y 𝑞Y

�̂�

T𝑦

T𝑥

−𝑞

𝑞



Ejemplo: Potencial lejano de un dipolo

• Centro del SC equidistante de las 
cargas: 

�⃗� =
𝑑
2 𝑞�̂� + −

𝑑
2 −𝑞 �̂� = 𝑞𝑑 �̂�

• Por lo tanto
𝐾( = �̂� , �⃗� = 𝑞𝑑 cos 𝜃

• Y entonces, lejos del dipolo

𝜑 𝑟 =
1

4𝜋𝜖$
𝐾(
𝑟1
=

1
4𝜋𝜖$

𝑞𝑑 cos 𝜃
𝑟1

�̂�

T𝑦

T𝑥

𝑟𝜃



Ejemplo: Campo lejano de un dipolo

• Calculemos el campo 𝐸
𝐸 = −∇𝜑

• Tanto el potencial como el campo 
son simétricos alrededor del eje �̂�.

• Podemos calcular el potencial en 
cartesianas en algún plano que 
contenga al eje z. Por ejemplo el 
plano xz 

�̂�

T𝑦

T𝑥

𝑟𝜃



Ejemplo: Campo lejano de un dipolo

• En el plano xz, tenemos
cos 𝜃 =

𝑧
𝑥1 + 𝑧1

𝑟 = 𝑥1 + 𝑧1

• Entonces, en el plano xz el potencial 
en cartesianas se escribe: 

�̂�

T𝑦

T𝑥

𝑟𝜃



Ejemplo: Campo lejano de un dipolo

• Calculemos el campo en el plano xz

𝐸 = −∇𝜑 = −
𝜕𝜑
𝜕𝑥 T𝑥 +

𝜕𝜑
𝜕𝑧 �̂�

• Sabiendo además que sin 𝜃 = w
w@xy@

• En el plano xz, 𝐸z = 0 y entonces:

campo en el plano xz



Ejemplo: Campo lejano de un dipolo



Dipolos moleculares / atómicos

• Permanentes (moleculares): elementos de distintas 
electronegatividades.

• Inducidos: Deformaciones del átomo o molécula debido a un campo 
externo

Valores de p en Debyes (D)
1D = 3,33564×10−30 C m

What is a Dipole ? 
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NO external E filed external E filed stretches 
the atom/molecule 

Dipole Moment =   

electric dipole moment, p (or electric dipole for short), is a measure of the polarity of a 
system of electric charges.  Here x is the displacement vector pointing from the negative 
charge to the positive charge. This implies that the electric dipole moment vector points from 
the negative charge to the positive charge. Note that the electric field lines run away from the 
positive charge and toward the negative charge. There is no inconsistency here, because the 
electric dipole moment has to do with the positions of the charges, not the field lines. 

small 
amount 

of charge 
moved by 

field E 
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