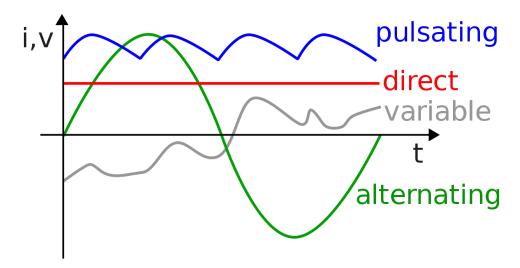
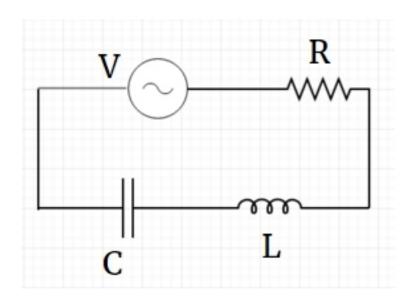
Corriente o voltaje alterno

- Es una corriente eléctrica (o voltaje) que revierte su dirección y cambia su magnitud en el tiempo periódicamente.
- Común en el suministro eléctrico.
- La corriente alterna es más utilizada por la baja pérdida al ser distribuida y la posibilidad del uso de transformadores.





 Supongamos ahora un circuito RLC en serie de corriente alterna donde

$$V = V_0 \cos \omega t$$

Por ley de Faraday tenemos

$$V_0 \cos \omega t = IR + L\frac{dI}{dt} + \frac{1}{C} \int I \, dt$$

 Podemos resolver esta ecuación diferencial de manera diferente a como lo venimos haciendo?

Números complejos y circuitos AC

- En 1893 Charles Steinmetz, ingeniero alemán en GE (EEUU), presenta el trabajo 'Complex Quantities and Their Use in Electrical Engineering'.
- En este trabajo muestra como ecuaciones como la anterior son en realidad un problema de álgebra simple de números complejos.
- En otras palabras

¡No hace falta integrar!

COMPLEX QUANTITIES AND THEIR USE IN ELECTRICAL ENGINEERING.

BY CHAS. PROTEUS STEINMETZ.

I.—Introduction.

In the following, I shall outline a method of calculating alternate current phenomena, which, I believe, differs from former methods essentially in so far, as it allows us to represent the alternate current, the sine-function of time, by a constant numerical quantity, and thereby eliminates the independent variable "time" altogether from the calculation of alternate current phenomena. Herefrom results a considerable simplification of methods. Whose before we had to deal with moviedic functions of an in

Representaciones de números complejos

Cartesianas

$$z = x + iy$$
$$x = Re(z)$$
$$y = Im(z)$$

Polares (Euler)

$$z = re^{i\varphi}$$

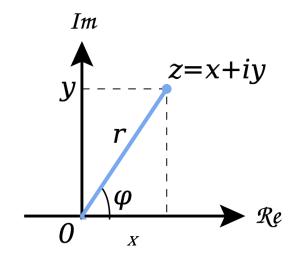
donde r es el módulo y y ϕ es el argumento o la fase

$$r = \sqrt{x^2 + y^2}$$

$$y = r \sin \varphi$$

$$x = r \cos \varphi$$

$$\varphi = \tan^{-1} \frac{y}{x}$$



Operaciones simples en polares

La multiplicación de números complejos es especialmente sencilla con la notación polar:

$$z_1z_2=rse^{\mathrm{i}(\phi+\psi)}\Leftrightarrow z_1z_2=re^{\mathrm{i}\phi}se^{\mathrm{i}\psi}$$

División:

$$rac{z_1}{z_2} = rac{r}{s} e^{\mathrm{i}(\phi - \psi)}$$

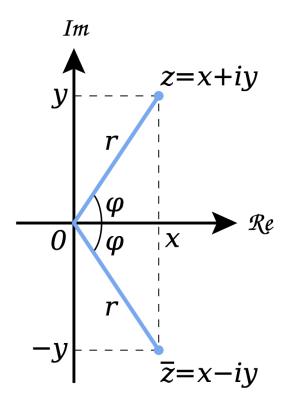
Potenciación:

$$z^n = r^n e^{\mathrm{i}\phi n} \Leftrightarrow z^n = \left(re^{i\phi}
ight)^n$$

Complejo conjugado $ar{z}$

- Si z = x + iy entonces $\bar{z} = x iy = re^{-i\varphi}$
- Propiedades

$$egin{aligned} \overline{z+w} &= ar{z} + ar{w} \ z + ar{z} &= 2 \cdot \operatorname{Re}(z) \ z - ar{z} &= 2i \cdot \operatorname{Im}(z) \ \hline z \overline{w} &= ar{z} ar{w} \ z &\in \mathbb{R} \Longleftrightarrow ar{z} = z \ |z|^2 = z ar{z} \geq 0 \ z
eq 0 \Rightarrow rac{1}{z} = rac{ar{z}}{|z|^2} \end{aligned}$$



Voltaje complejo

• La FEM de la batería

$$V_0 \cos \omega t$$

• Puede ser vista como la parte real del número complejo

$$V_0 e^{i\omega t} = V_0(\cos \omega t + i \sin \omega t)$$

• En cuyo caso

$$V_0 \cos \omega t = Re(V_0 e^{i\omega t})$$

Corriente compleja

• Para la solución de nuestro problema podemos hacer lo mismo con I $I_0\cos(\omega t + \varphi) = Re(I_0e^{i(\omega t + \varphi)})$

donde φ es la diferencia de fase con V

• Pero podemos reescribir esto como

$$I_0\cos(\omega t + \varphi) = Re(I_0e^{i\varphi}e^{i\omega t})$$

- Ahora definimos **la amplitud compleja** \tilde{I} (independiente del tiempo) $\tilde{I} = I_0 e^{i\varphi} = I_0 (\cos \varphi + i \sin \varphi)$
- Podemos escribir

$$I_0 \cos(\omega t + \varphi) = Re(\tilde{I} e^{i\omega t})$$

Corriente compleja: derivada e integral

- Veamos cómo dan las derivadas y las integrales de $ilde{I} \, e^{i\omega t}$
- La derivada respecto a *t* queda:

$$\frac{d\tilde{I}\,e^{i\omega t}}{dt} = \tilde{I}\frac{de^{i\omega t}}{dt} = i\omega\tilde{I}e^{i\omega t}$$

¡Derivar la corriente compleja equivale a multiplicarla por $i\omega$!

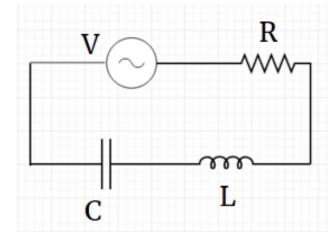
• La integral queda

$$\int \tilde{I} e^{i\omega t} dt = \tilde{I} \int e^{i\omega t} dt = \frac{1}{i\omega} \tilde{I} e^{i\omega t} = -\frac{i}{\omega} \tilde{I} e^{i\omega t}$$

iIntegrar la corriente compleja equivale a multiplicarla por $\frac{1}{i\omega}$!

Pregunta

• ¿Por cuánto hay que multiplicar $\tilde{I}e^{i\omega t}$ para obtener su derivada segunda respecto al tiempo?

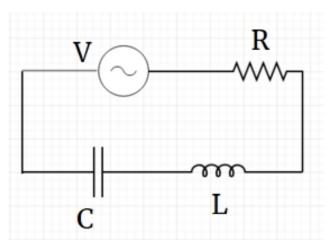


 Estas propiedades de los números complejos nos permiten hallar la solución de la ecuación diferencial del circuito. Entonces

$$V_0 \cos \omega t = IR + L\frac{dI}{dt} + \frac{1}{C} \int I \, dt$$

Como la ecuación es lineal, esto equivale a

$$Re(V_0e^{i\omega t}) = Re(R\tilde{I}\ e^{i\omega t} + L\frac{d\tilde{I}\ e^{i\omega t}}{dt} + \frac{1}{C}\int \tilde{I}\ e^{i\omega t}dt)$$



 Resolvamos entonces en complejos y luego tomemos la parte real

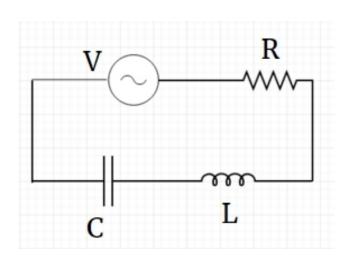
$$V_0 e^{i\omega t} = R\tilde{I} e^{i\omega t} + L \frac{d\tilde{I} e^{i\omega t}}{dt} + \frac{1}{C} \int \tilde{I} e^{i\omega t} dt$$

• Reemplazamos la integral y la derivada

$$V_0 e^{i\omega t} = R\tilde{I} e^{i\omega t} + i\omega L\tilde{I} e^{i\omega t} + \frac{1}{i\omega C} \tilde{I} e^{i\omega t}$$

ullet simplificamos $e^{i\omega t}$

$$V_0 = R\tilde{I} + i\omega L\tilde{I} + \frac{1}{i\omega C}\tilde{I}$$



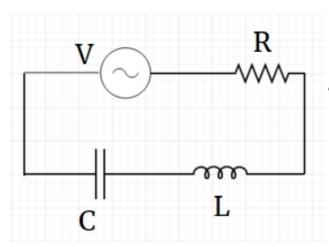
ullet Y por último despejamos $ilde{I}$

$$V_0 = \left[R + i\omega L + \frac{1}{i\omega C} \right] \tilde{I}$$

$$\tilde{I} = \frac{V_0}{R + i\omega L + \frac{1}{i\omega C}} = \frac{V_0}{Z}$$

donde Z es la impedancia resultante del circuito

$$Z = R + i\omega L + \frac{1}{i\omega C} = R + i\omega L - \frac{i}{\omega C}$$



Entonces, la corriente es

$$I(t) = Re(\tilde{I}e^{i\omega t}) = Re\left[\frac{V_0}{R + i\omega L - \frac{i}{\omega C}}e^{i\omega t}\right]$$

• Llamemos
$$\theta$$
 a la fase de la impedancia
$$Z = R + i \left[\omega L - \frac{1}{\omega C} \right] = |Z| e^{i\theta}$$

$$I(t) = Re \left[\frac{V_0}{|Z| e^{i\theta}} e^{i\omega t} \right] = Re \left[\frac{V_0}{|Z|} e^{i(\omega t - \theta)} \right]$$

$$I(t) = \frac{V_0}{|Z|}\cos(\omega t - \theta)$$

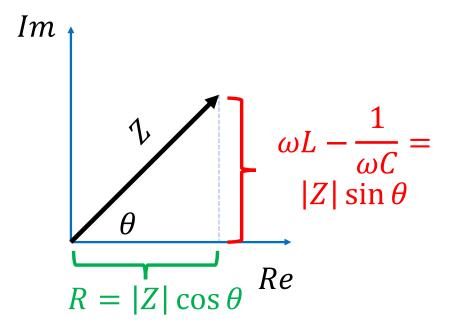
La impedancia tiene las propiedades:

$$Z = R + i \left[\omega L - \frac{1}{\omega C} \right] = |Z|e^{i\theta}$$

$$|Z| = \sqrt{R^2 + \left[\omega L - \frac{1}{\omega C}\right]^2}$$

$$\tan \theta = \frac{\omega L - \frac{1}{\omega C}}{R}$$

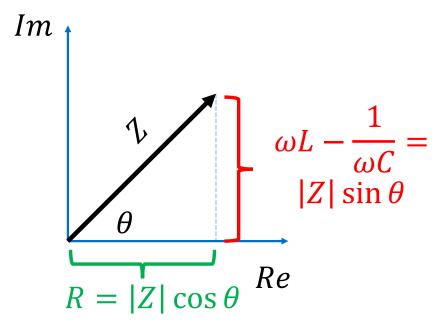
Impedancia Z en el plano complejo



• Entonces la corriente real vale:

$$I(t) = \frac{V_0 \cos\left[\omega t - \tan^{-1}\frac{\omega L - \frac{1}{\omega C}}{R}\right]}{\sqrt{R^2 + \left[\omega L - \frac{1}{\omega C}\right]^2}}$$

Impedancia Z en el plano complejo



La impedancia

- Como vemos en este caso, la intensidad de la corriente depende de ω , C, L y R .
- También de ellas depende su fase.
- Llamemos nuevamente I_0 a la amplitud real de I:

$$I_0 = \frac{V_0}{\sqrt{R^2 + \left[\omega L - \frac{1}{\omega C}\right]^2}}$$

La impedancia

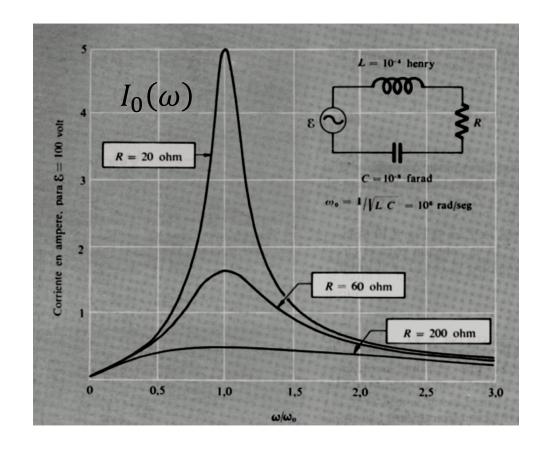
• En la figura vemos cómo varía I_0 en función de ω para:

$$V_0 = 100 V$$

 $C = 10^{-8} Farad$,
 $L = 10^{-4} H$
 $R = 20,60,200 \Omega$

• Vemos que:

$$\lim_{\omega \to 0} I_0(\omega) = 0 \text{ y } \lim_{\omega \to \infty} I_0(\omega) = 0$$



La impedancia

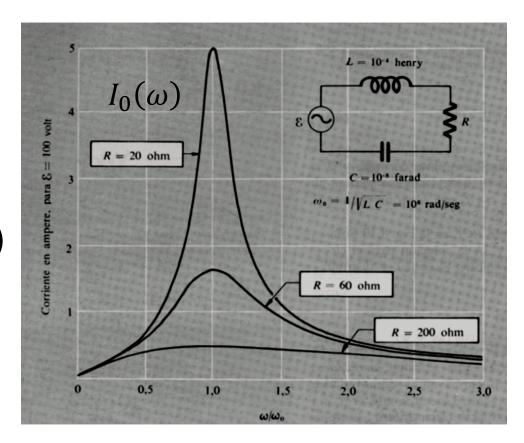
• $I_0(\omega)$ alcanza un máximo cuando

$$\omega = \frac{1}{\sqrt{LC}} = 10^4 rad/s$$

 Cuando esto ocurre se da una resonancia y el efecto de L y C parecen desaparecer (hasta la fase)

$$I_{res}(t) = \frac{V_0 \cos \frac{1}{\sqrt{LC}} t}{R}$$

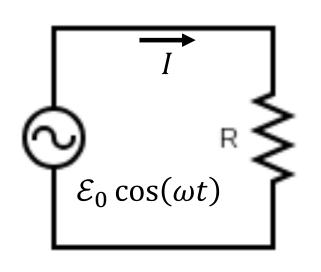
• El máximo es más intenso y más fino en la medida que *R* es más pequeño



Pregunta

• En el caso de resonancia para un circuito RLC en serie: ¿Qué tipo de valor extremo alcanza la impedancia equivalente?

Potencia en un circuito de alterna



- Sea un circuito con una fuente $\mathcal{E}_0 \cos(\omega t)$ y una resistencia R.
- La corriente es:

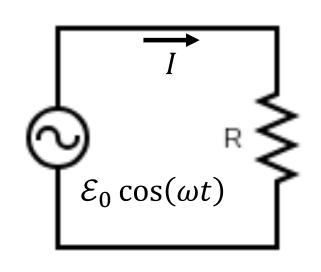
$$I = \frac{\mathcal{E}_0}{R} \cos(\omega t)$$

• La potencia instantánea disipada en R es:

$$P = IV = \frac{\mathcal{E}_0}{R} \cos(\omega t) \,\mathcal{E}_0 \cos(\omega t)$$

$$P = \frac{{\mathcal{E}_0}^2}{R} [\cos(\omega t)]^2$$

Potencia en un circuito de alterna



• La potencia media en un período

$$T = \frac{2\pi}{\omega}$$

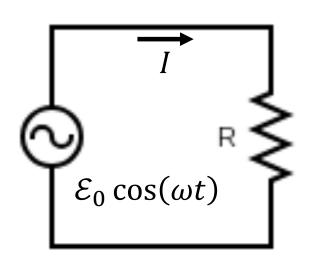
viene dada por la expresión

$$\langle P \rangle = \frac{1}{T} \int_0^T P \, dt = \frac{1}{T} \int_0^T \frac{{\mathcal{E}_0}^2}{R} \left[\cos(\omega t) \right]^2 dt$$

$$= \frac{{\mathcal{E}_0}^2}{R} \frac{1}{T} \int_0^T [\cos(\omega t)]^2 dt$$

$$\langle P \rangle = \frac{{\mathcal{E}_0}^2}{2R}$$

Potencia en un circuito de alterna



• A veces la tensión viene dada en RMS es decir en

$$V_{RMS} = \frac{\mathcal{E}_0}{\sqrt{2}}$$

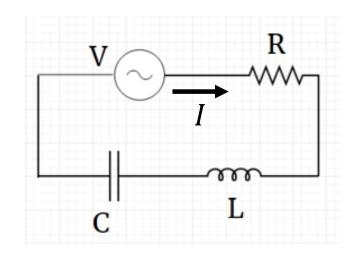
 Por ejemplo, la tensión RMS en la red doméstica es de 220 V (y frecuencia 50 Hz). Eso implica una amplitud real:

$$\mathcal{E}_0 = 220 \ V\sqrt{2} = 311 \ V$$

• En términos de V_{RMS} la potencia media queda:

$$\langle P \rangle = \frac{V_{RMS}^2}{R}$$

Potencia media en RLC en serie

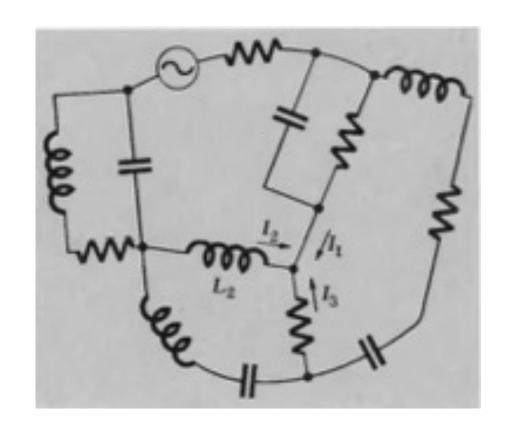


- Si tenemos una impedancia total $Z=|Z|e^{i\theta}$ $P=IV=\frac{\mathcal{E}_0}{|Z|}\cos(\omega t-\theta)~\mathcal{E}_0\cos(\omega t)$
- desarmamos $\cos(\omega t \theta)$:

$$P = \frac{\mathcal{E}_0^2}{|Z|} [(\cos \omega t)^2 \cos \theta + \cos \omega t \sin \omega t \sin \theta]$$
$$\langle P \rangle = \frac{\mathcal{E}_0^2}{2|Z|} \cos \theta = \frac{1}{2} \left(\frac{\mathcal{E}_0}{|Z|}\right)^2 |Z| \cos \theta = \frac{1}{2} \left(\frac{\mathcal{E}_0}{|Z|}\right)^2 R$$

$$\langle P \rangle = \frac{I_0^2}{2} R$$
 (la unica que disipa es R)

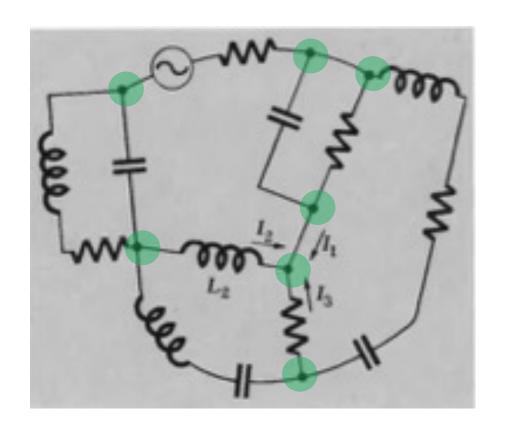
- Una red de corriente alterna es un conjunto de **resistencias**, **capacitores e inductores** en los cuales circula corriente que oscila **estacionariamente** a una frecuencia ω .
- La frecuencia es una constante en todo el circuito.
- Para hallar la corriente en cada rama hay que saber su amplitud y su fase respecto a la fuente.



 Por conservación de la carga, las corrientes que pasan por cada nodo deben dar suma nula

$$I_1 + I_2 \dots = 0$$

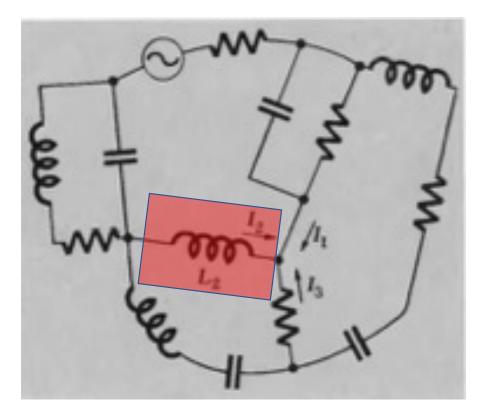
• En cada rama, el voltaje también tendrá su propia amplitud y fase.



 La fase de la tensión y la corriente en cada rama puede no ser la misma.

$$I_2 = I_{02} \cos (\omega t + \varphi_2)$$

$$V_2 = V_{02} \cos (\omega t + \theta_2)$$



Impedancias y admitancias

• ¿Cómo se relacionan la tensión y la corriente complejas en cada rama k?

$$\widetilde{I_k}e^{i\omega t} = Y_k\widetilde{V_k}e^{i\omega t}$$

$$\widetilde{I_k} = Y_k \widetilde{V_k}$$

donde $\widetilde{I_k}$ y $\widetilde{V_k}$ son las amplitudes complejas de la tensión y la corriente en cada rama k

$$\widetilde{I_k} = \left| \widetilde{I_k} \right| e^{i\varphi_k} \quad \text{y} \quad \widetilde{V_k} = \left| \widetilde{V_k} \right| e^{i\theta_k}$$

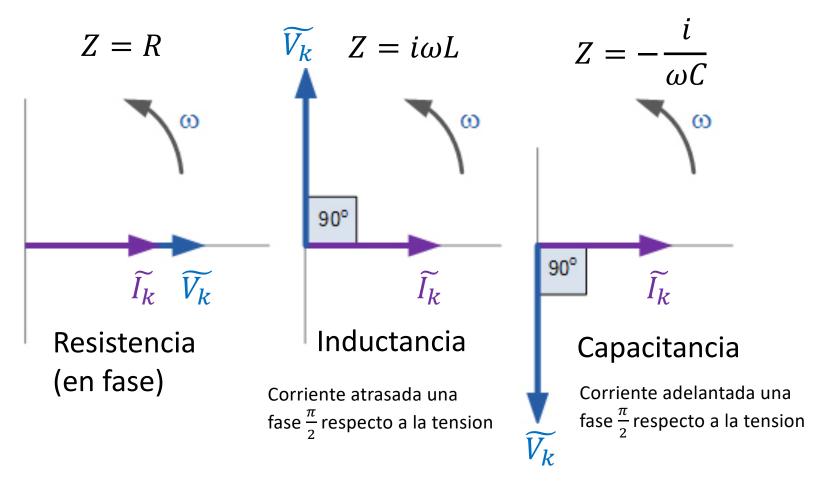
Impedancias y admitancias

- La cantidad compleja Y_k se denomina **admitancia** $\left(unidad = \frac{1}{2}\right)$.
- La inversa compleja de la admitancia es la **impedancia** $Z_k(unidad=\Omega)$ $\widetilde{V_k}=Z_k\widetilde{I_k}=\frac{1}{Y_k}\widetilde{I_k}$

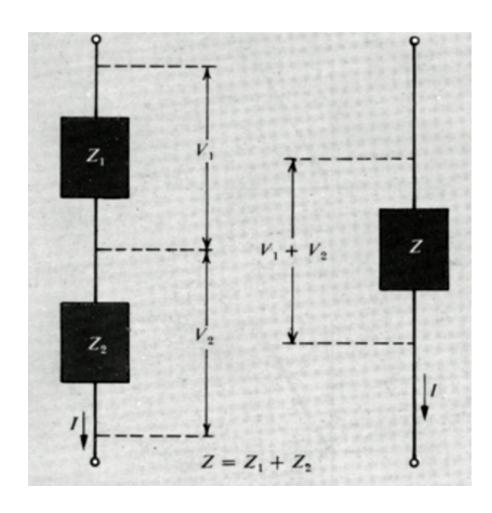
$$\widetilde{V_k} = Z_k \widetilde{I_k} = \frac{1}{Y_k} \widetilde{I_k}$$

Símbolo	Admitancia, Y	Impedancia, $Z = \frac{1}{Y}$
	$\frac{1}{R}$	R
	$\frac{-i}{\omega L}$	$i\omega L$
C	iωC	$\frac{-i}{\omega C}$

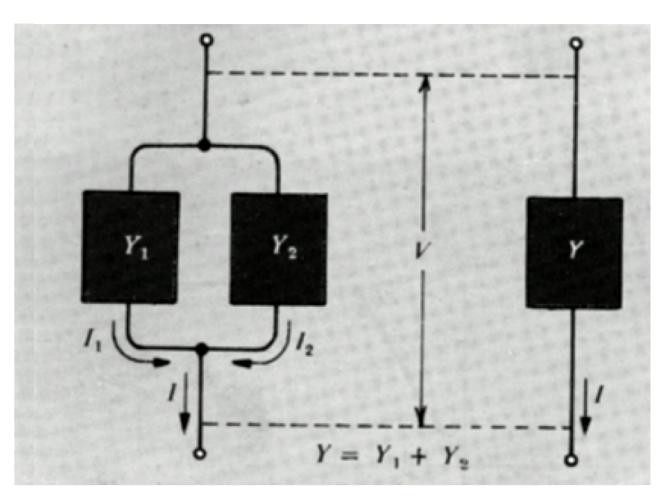
Diferencias de fase entre $\widetilde{V_k}$ e $\widetilde{I_k}\big(\widetilde{V_k}=Z_k\widetilde{I_k}\big)$ para distintos tipos de impedancia



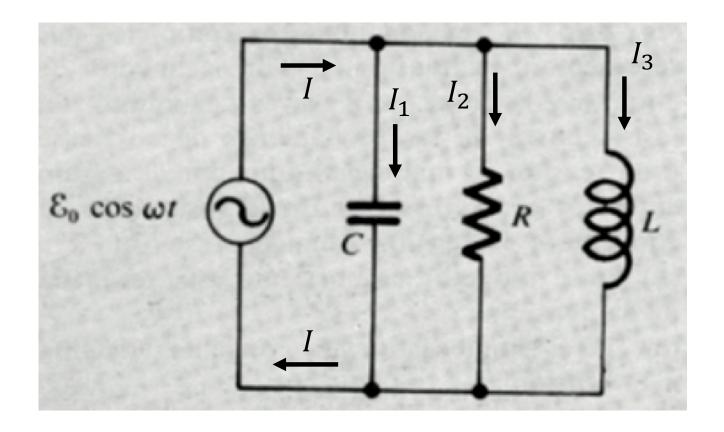
Impedancias en serie: $Z=Z_1+Z_2$



Admitancias en paralelo: $Y = Y_1 + Y_2$



Ejercicio: resolver el circuito RLC paralelo



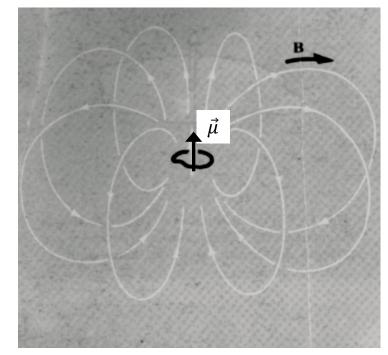
Ayuda: Ver RLC_paralelo.pdf en campus

Magnetismo en la materia

El campo lejano de una espira es dipolar

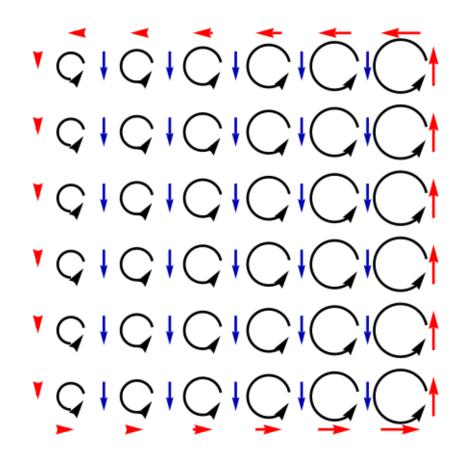
- La ausencia de monopolos magnéticos hace que un campo dipolar sea la forma más básica de un campo eléctrico.
- Es posible demostrar que el campo magnético lejos de cualquier espira plana es de tipo dipolar.
- En coordenadas esféricas y tomando $\vec{\mu} = IA\hat{z}$:

$$B_r = \frac{\mu_0 \mu}{2\pi r^3} \cos \theta \quad B_\theta = \frac{\mu_0 \mu}{4\pi r^3} \sin \theta \quad y \quad B_\phi = 0$$



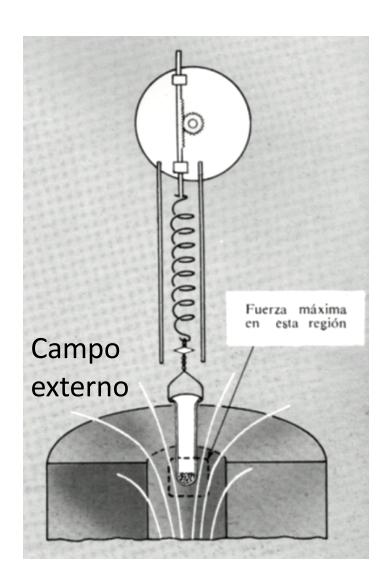
Magnetismo en la materia

 En particular Ampère formuló la hipótesis más simple sobre el magnetismo en la materia y era que un material puede aproximarse como un conjunto de pequeñas espiras distribuidas dentro del material



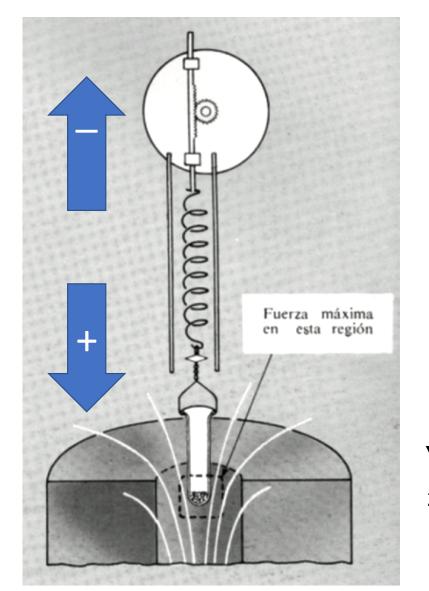
Materiales magnéticos

- Los materiales reaccionan de manera diferente a un campo magnético externo.
- Supongamos un campo magnético que llamaremos de vacío generado por un solenoide finito.
- Coloquemos una muestra conectada a un dinamómetro e introduzcamosla en el solenoide.

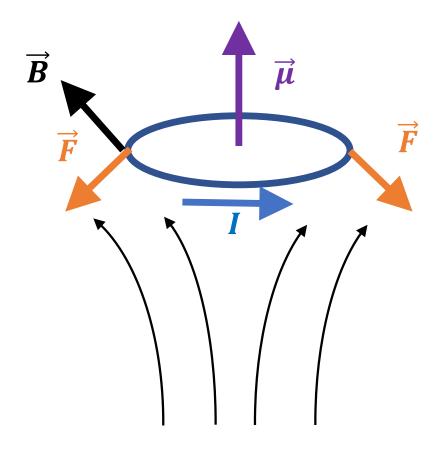


Substancia	Fórmula	Fuerza*, Newton • 10 ⁻⁵
Diamagnéticas		
Agua	H_2O	 22
Cobre	Cu	2,6
Plomo	Pb	 37
Cloruro sódico	NaCl	 15
Cuarzo	SiO_2	 16
Azufre	S	— 16
Diamante	C	 16
Grafito	C	 110
Nitrógeno líquido	N_2	—10 (78 K)
Paramagnéticas		
Sodio	Na	+ 20
Aluminio	Al	+ 17
Cloruro de cobre	$CuCl_2$	+ 280
Sulfato de níquel	NiSO ₄	+ 830
Oxígeno líquido	O_2	+7500 (90 K)
Ferromagnéticas		
Hierro	Fe	+ 400 000
Magnetita	Fe_3O_4	+ 120 000

^{*} Sentido de la fuerza: hacia abajo +, hacia arriba -, Todas las medidas se han efectuado a 20 °C excepto cuando se indica.



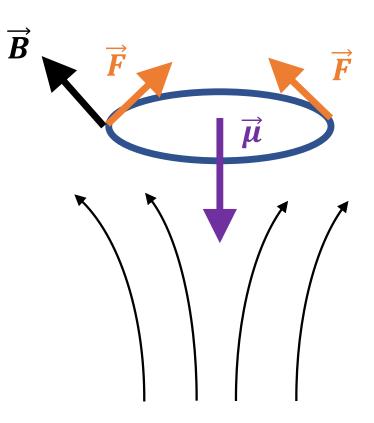
Fuerza sobre un dipolo en campo no uniforme



Campo externo (solenoide)

7

Fuerza sobre un dipolo en campo no uniforme

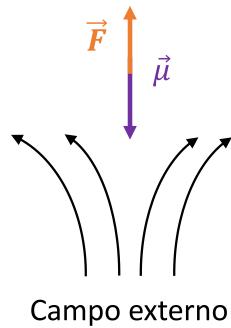


Campo externo (solenoide)

7

Diamagnetismo

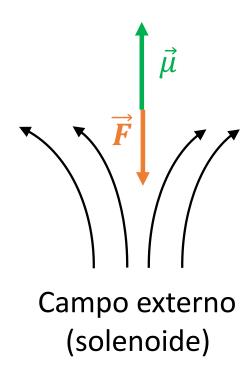
- En los elementos diamagnéticos, el campo exterior induce a nivel atómico y molecular momentos dipolares magnéticos microscópicos en la dirección opuesta.
- Se trata de un efecto descripto por la mecánica cuántica.
- En consecuencia el campo en el interior del material es menor que el campo externo.
- La fuerza resultante sobre el dipolo inducido tiende a alejarlo del solenoide



Campo externo (solenoide)

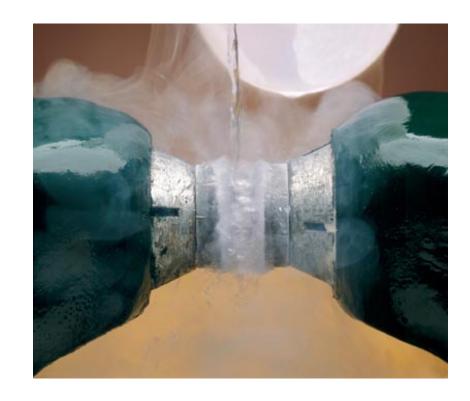
• Estructura formada por átomos que poseen dipolos magnéticos permanentes normalmente distribuidos al azar.

- Estructura formada por átomos tienen que poseen dipolos magnéticos permanentes normalmente distribuidos al azar.
- Dipolos atómicos se alinean con el campo externo.
- Es atraido hacia donde el campo externo aumenta



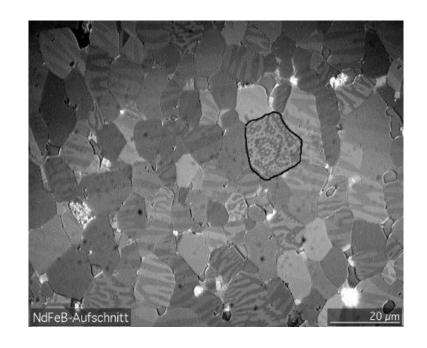
- Estructura formada por átomos tienen que poseen dipolos magneticos permanentes normalmente distribuidos al azar.
- Dipolos atómicos se alinean con el campo externo.
- Es atraido hacia donde el campo externo aumenta
- Al dejar de exponer el material al campo externo, los dipolos se vuelven a desordenar.

- En general son fuerzas débiles, pero en el caso de algunos líquidos, la fuerza es capaz de compararse al peso
- La figura muestra oxígeno líquido siendo vertido entre los polos de un imán



Ferromagnetismo

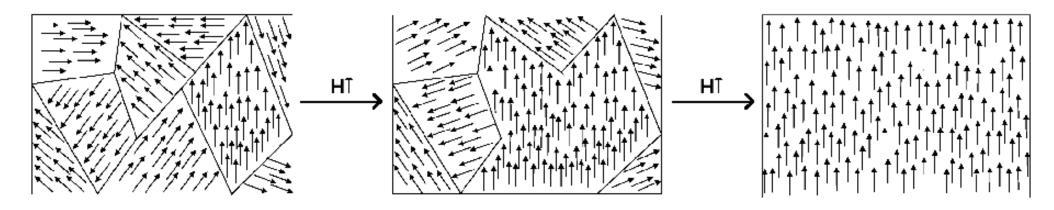
- Atomos tienen dipolos magnéticos permanentes.
- Por razones cuánticas, estos materiales poseen zonas llamadas dominios magnéticos.
- Los dominios tienen un tamaño de algunos $\mu m = 10^{-6} m$.
- En estos dominios, los dipolos magnéticos de los átomos/moléculas están 100% alineados.



Vista de dominos magnéticos (rayas oscuras y claras) en una aleación usada para hacer imanes

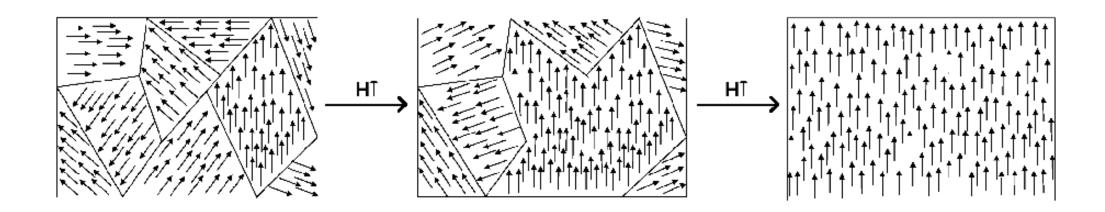
Ferromagnetismo

- Al ser expuestos a un campo externo los dominios se alinean más o menos con él dependiendo de la intensidad de aquel, y la temperatura.
- Son materiales atraidos al campo externo con una fuerza mayor a los paramagnéticos.
- Dentro del material el campo puede ser varios órdenes de magnitud más grande que el campo externo.

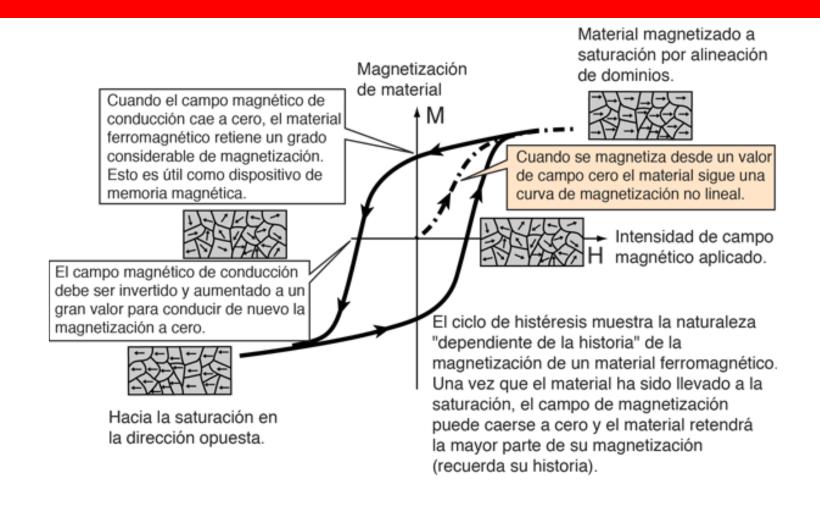


Ferromagnetismo

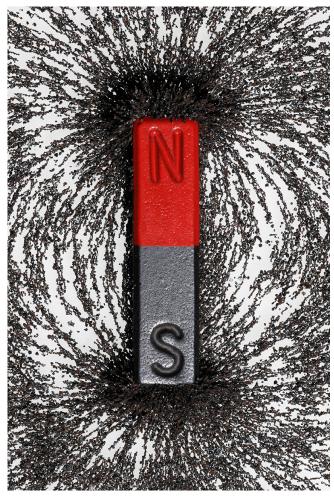
- Al quitar el campo externo algunos dominios pueden desorganizarse, otros no, quedando el material magnetizado permanentemente.
- Para desmagnetizar hay que calentarlo mucho o alterarlo mecánicamente.



Ferromagnetismo: ciclo de Histéresis



Imanes permanentes



Ley de Ampère para materiales magnéticos

Ley de Ampère para materiales magnéticos

• En materiales paramagnéticos y diamagnéticos el campo generado por el material \vec{B}_{mat} es proporcional al campo externo \vec{B}_{ext}

$$\vec{B}_{mat} = \chi_m \vec{B}_{ext}$$

donde χ_m es la susceptibilidad magnética del material

• Entonces el campo total en el material es la suma del campo generado por el material y el campo externo.

$$\vec{B} = \vec{B}_{ext} + \vec{B}_{mat} = \vec{B}_{ext} + \chi_m \vec{B}_{ext} = (1 + \chi_m) \vec{B}_{ext}$$

Ley de Ampère para materiales magnéticos

• De la misma manera que pensamos el campo \overrightarrow{D} con dieléctricos, definimos el campo \overrightarrow{H} tal que:

$$\vec{H} = \frac{\vec{B}}{(1+\chi_m)\mu_0} = \frac{\vec{B}}{\mu_m}$$

• Donde μ_m es la permeabilidad magnética del material. Entonces:

$$\oint_{\mathbf{C}} \vec{H} \cdot \overrightarrow{dl} = \iint_{libre} \vec{J}_{libre} \cdot \overrightarrow{da}$$

Ley de Ampère para medios magnéticos.