
Fenómenos periódicos

• Corazón
• Respirar
• Hamaca
• Bandera
• Movimiento de estrellas, planetas, lunas
• Nubes
• Sonido
• Luz



Ondas

• Ondas transversales: La perturbación es perpendicular al 
sentido de propagación de la onda (onda en una cuerda, ondas 
electromagnéticas, etc)
• Ondas longitudinales: La perturbación se da en la misma 

dirección que la propagación de la onda (ondas sonoras)

Una onda es una perturbación espacio temporal de una cantidad física con 
cierta periodicidad con la capacidad de transferir energía al propagarse.



Ondas electromagnéticas



La corrección de Maxwell a la ley de Ampère

• Conocemos bien la ley de Ampère

!𝐵 # 𝑑𝑙 = 𝜇() 𝐽 # 𝑑𝑠

Supongamos un capacitor cargándose a una 
velocidad dada por 

𝐼 =
𝑑𝑄
𝑑𝑡

• La corriente 𝐼 da lugar a un campo magnético 𝐵 tal 
que si la superficie 𝑆1 está limitada por el camino 
𝜕𝑆:

!𝐵 # 𝑑𝑙 = 𝜇() 𝐽 # 𝑑𝑠 = 𝜇(𝐼

𝑆1𝜕𝑆
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La corrección de Maxwell a la ley de Ampère

• El resultado debe valer para toda superficie 
limitada por 𝜕𝑆 incluyendo 𝑆3 a través de la 
cual no pasa corriente !! 

• Maxwell corrigió la ley de Ampère para salvar 
esta inconsistencia agregando un término 
dependiente del flujo de la derivada temporal 
del campo eléctrico 𝐸 :en el capacitor

!𝐵 # 𝑑𝑙 = 𝜇()𝚥 # 𝑑𝑠 = 𝜇(𝐼 = 𝜇(𝜀()
𝜕𝐸
𝜕𝑡

# 𝑑𝑠
𝑆1𝜕𝑆 𝑆3



La corrección de Maxwell a la ley de Ampère

• Con lo cual la ley de Ampère-Maxwell en 
forma diferencial es:

!𝐵 # 𝑑𝑙 = 𝜇()𝚥 # 𝑑𝑠 + 𝜇(𝜀()
𝜕𝐸
𝜕𝑡

# 𝑑𝑠

• Como vemos el segundo término del 
segundo miembro sólo aparece en 
situaciones no estacionarias.

C S S



Ecuaciones de Maxwell y las ondas EM
• Consideremos ahora las ecuaciones de Maxwell para campos eléctricos y magnéticos en el vacío, 

sin cargas ni corrientes.

8𝐸 # 𝑑𝑎 = 0

8𝐵 # 𝑑𝑎 = 0

!𝐵 # 𝑑𝑙 = 𝜇(𝜀()
𝜕𝐸
𝜕𝑡

# 𝑑𝑠

!𝐸 # 𝑑𝑙 = −)
𝜕𝐵
𝜕𝑡

# 𝑑𝑠

Gauss

∄ monopolo

Ampère + Maxwell

Faraday



Ecuaciones de Maxwell y las ondas EM

• Estas ecuaciones, en forma diferencial se escriben:

∇ # 𝐸 = 0
∇ # 𝐵 = 0

∇×𝐵 = 𝜖(𝜇(
𝜕𝐸
𝜕𝑡

∇×𝐸 = −
𝜕𝐵
𝜕𝑡

Gauss
∄ monopolo

Ampère + Maxwell

Faraday



Ecuaciones de Maxwell y las ondas EM

• Tomemos el rotor de la Ley de Faraday:

∇×∇×𝐸 = −
𝜕
𝜕𝑡 ∇×𝐵

• Y derivemos respecto al tiempo la Ley de Ampère + Maxwell:

𝜕
𝜕𝑡 ∇×𝐵 = 𝜖(𝜇(

𝜕3𝐸
𝜕𝑡3



Ecuaciones de Maxwell y las ondas EM

• Igualando estas dos expresiones tenemos

∇×∇×𝐸 = −𝜖(𝜇(
𝜕3𝐸
𝜕𝑡3

• Pero, como vimos antes:

∇×∇×𝐸 = ∇ ∇ # 𝐸 − ∇3𝐸



Ecuaciones de Maxwell y las ondas EM

• Con lo cual 

∇3𝐸 = 𝜖(𝜇(
𝜕3𝐸
𝜕𝑡3

• O lo que es lo mismo, en coordenadas cartesianas
𝜕3𝐸@
𝜕𝑡3

=
1

𝜖(𝜇(
𝜕3𝐸@
𝜕𝑥3

𝜕3𝐸C
𝜕𝑡3 =

1
𝜖(𝜇(

𝜕3𝐸C
𝜕𝑦3

𝜕3𝐸E
𝜕𝑡3

=
1

𝜖(𝜇(
𝜕3𝐸E
𝜕𝑧3



Ecuaciones de Maxwell y las ondas EM

• La velocidad de propagación de las ondas electromagnéticas en el 
vacío es la velocidad de la luz:

𝑣 = 𝑐 =
1
𝜖(𝜇(

≅ 300000 𝑘𝑚/𝑠

• La onda electromagnética es entonces una onda vectorial transversal
• Una solución sinusoidal plana para 𝐸 que oscila a lo largo del eje 𝑥

que se propaga a lo largo del eje 𝑧 es:

𝐸 𝑧, 𝑡 = 𝐸( cos(𝑘𝑧 − 𝜔𝑡)U𝑥

Amplitud polarización

nro de onda frecuencia angular

fase



Ecuaciones de Maxwell y las ondas EM

• Obtengamos 𝐵 mediante la ley de Faraday. En cartesianas:

∇×𝐸 =
𝜕𝐸E
𝜕𝑦

−
𝜕𝐸C
𝜕𝑧

U𝑥 −
𝜕𝐸E
𝜕𝑥

−
𝜕𝐸@
𝜕𝑧

U𝑦 +
𝜕𝐸C
𝜕𝑥

−
𝜕𝐸@
𝜕𝑦

𝑧̂

• De esto solo sobrevive el segundo término de la componente 𝑦:

𝜕𝐸@
𝜕𝑧

U𝑦 = −𝐸(𝑘 sin 𝑘𝑧 − 𝜔𝑡 U𝑦 = −
𝜕𝐵
𝜕𝑡



Ecuaciones de Maxwell y las ondas EM

• Entonces :

𝐵(𝑧, 𝑡) = 𝐸(𝑘 U𝑦 ∫ sin 𝑘𝑧 − 𝜔𝑡 𝑑𝑡 =
Z[\
] cos(𝑘𝑧 − 𝜔𝑡) U𝑦

• De la ecuación de onda para 𝐸 sacamos la relación de dispersión:

𝑐 =
𝜔
𝑘
=
𝜆
𝜏
= 𝜆𝜈

• Por lo tanto:

𝐵(𝑧, 𝑡) = Z[
a
cos(𝑘𝑧 − 𝜔𝑡)U𝑦 Perpendiculares y en fase



Ondas electromagnéticas



Propiedades de una onda EM viajera

𝐸 ⊥ dirección de propagación

𝐵 ⊥ dirección de propagación

𝐸 y 𝐵 en fase
𝐸 ⊥ 𝐵

𝐵 =
𝐸
𝑐

𝐸×𝐵 es paralelo a la dirección de propagación



El espectro electromagnético



Energía transportada por ondas EM

• Una onda electromagnética transporta al propagarse con 
velocidad 𝑐 a la energía electromagnética de los campos que la 
forman.
• Vimos que la densidad de energía por unidad de volumen venía 

dada por :

𝑢 =
𝜖(𝐸3

2 +
𝐵3

2𝜇(
• Calculemos la cantidad de energía que pasa por unidad de 

tiempo a través de una unidad de superficie perpendicular a la 
dirección de propagación.



Energía transportada por ondas EM

• En 𝑧 = 0 tenemos:
𝐸(0, 𝑡)3 = 𝐸(0, 𝑡) 3 = 𝐸( cos( − 𝜔𝑡) 3

𝐵(0, 𝑡)3 = 𝐵(0, 𝑡) 3 =
𝐸(
𝑐
cos( − 𝜔𝑡)

3

• Entonces: 

𝑢 =
𝜖(
2 𝐸(3 +

𝐸(
𝑐

3 1
𝜖(𝜇(

cos(𝜔𝑡) 3

• El promedio de cos(𝜔𝑡) 3 en un período es 13 entonces si 1
e[f[

= 𝑐3

𝑢 =
𝜖(
4
𝐸(3 + 𝐸(3 =

𝜖(𝐸(3

2



Energía transportada por ondas EM

• Entonces, la energía promedio que atraviesa una unidad de superficie por 
unidad de tiempo es:

𝑆 = 𝑢 𝑐 =
𝜖(𝐸(3

2 𝑐

• Esto equivale al módulo del vector:

𝑆 =
1
𝜇(

𝐸×𝐵



Ondas planas

• En la clase anterior vimos la onda:
𝐸 𝑧, 𝑡 = 𝐸( cos(𝑘𝑧 − 𝜔𝑡)U𝑥

• Para un tiempo fijo 𝑡(, cada valor de 
𝑧 corresponde a una superficie del 
mismo valor de fase. 

• En cada plano, los campos 𝐸 y 𝐵 no 
varían.

𝐸
𝐵

𝑧̂

𝐸 𝑧, 𝑡 = 𝐸( cos(𝑘𝑧 − 𝜔𝑡()U𝑥



Ondas planas

• Para un valor de 𝑡(, elijamos un valor 
de 𝑧 = 𝑧(. La cantidad 

𝜑( = 𝑘𝑧( − 𝜔𝑡(. 
es la fase de ese plano o frente de onda.
• 𝜑( identifica ese frente en particular.
• Al hacer correr 𝑡 a fase constante vamos 

ir ‘siguiendo’ ese frente de onda en 
posiciones:

𝑧 =
𝜑(
𝑘
+
𝜔
𝑘
𝑡 =

𝜑(
𝑘
+ 𝑐𝑡

𝐸
𝐵

𝑧̂

𝐸 𝑧, 𝑡 = 𝐸( cos(𝑘𝑧 − 𝜔𝑡()U𝑥



Ondas planas: ecuación normal del plano

• 𝑃1 y 𝑃 que pertenecen a un 
plano de normal U𝑛. 

• La siguiente es la ecuación 
normal del plano

U𝑛 # 𝑝 − 𝑝1 = 0

• Si dejamos fijo 𝑝1 el plano está 
compuesto por los puntos 𝑝 tales 
que 

U𝑛 # 𝑝 = U𝑛 # 𝑝1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒



Ondas planas

• Las ondas planas son una solución de la 
ecuación de ondas EM:

𝐸 𝑟, 𝑡 = 𝐸( cos 𝑘 # 𝑟 − 𝜔𝑡

• Para cada instante 𝑡, el plano corresponde a
𝑘 # 𝑟 − ω𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒
𝑘 # 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 + ω𝑡

• Esto define el frente de onda, que con 𝑡 se 
desplaza en la dirección de 𝑘 con velocidad 𝑐



Ondas esféricas

• Otra solución de la ecuación de onda en 
esféricas es:

𝐸 𝑟, 𝑡 =
𝐸(
𝑟
cos 𝑘𝑟 − 𝜔𝑡

• Donde        𝑘 = 𝑘𝑟̂ y 𝐸( ⊥ 𝑘

• Lejos de la fuente, la onda esférica en una 
pequeña porción puede ser considerada plana 
en primera aproximación



Rayos vs. Frentes de onda

• De la misma manera que las líneas de campo los rayos son líneas que 
tienen como tangentes los vectores de onda 𝑘. 

Fuente puntual Frentes de onda Frentes de onda

Rayo

Rayo

Rayo

Rayo

Rayo

Rayo



Refracción y reflexión de la luz



La luz en la materia

• Cuando la luz encuentra un material, esta puede interactuar con él de 
diferentes maneras dependiendo normalmente de su longitud de 
onda:
• Reflexión
• Absorción 
• Dispersión

• Materiales opticamente transparentes: materiales en los que los tres 
efectos son depreciables en el rango de longitudes de onda de 
interés.
• En el rango visible (𝜆 entre 380 y 740 nm), materiales como el agua o 

el vidrio son transparentes.



La luz en la materia

• En medios ópticamente 
transparentes, la velocidad de 
propagación de la luz 𝑣 es menor a su 
valor en el vacío 𝑐.
• Una cantidad importante de un 

material transparente es el índice de 
refracción 𝑛, definido como 

𝑛 =
𝑐
𝑣

• 𝑛 es adimensional y 𝑛 ≥ 1





Camino óptico

• Dada una onda EM que recorre una distancia 𝐿

𝑘

Frentes de onda

Agua𝐿



Camino óptico

• Dada una onda EM que recorre una distancia 𝐿, el camino óptico se 
define como:

𝐶. 𝑂.= 𝑛𝐿

𝑘

Frente de onda

𝐿 Agua



Principio de Fermat y Ley de Snell

El principio de Fermat, relacionado con 
el principio de mínima acción, dice:

• El camino que recorre la luz entre dos 
puntos, es tal que minimiza el tiempo 
en el que realiza el recorrido

• Esto equivale a decir que el recorrido 
óptimo es el de menor camino óptico.

𝑛1

𝑛3 > 𝑛1



Principio de Fermat y Ley de Snell

• Supongamos dos medios de índices 
𝑛1 y 𝑛3 > 𝑛1.
• El camino de la onda (rayo) pasa por 

lo puntos A (0, 𝑦v) y B (𝑥w, 𝑦w).
• Sea 𝑥 la abcisa del punto sobre la 

interfase donde impacta el rayo
• El camino óptico total recorrido entre 

A y B es 
𝐶. 𝑂.

= 𝑛1 𝑥3 + 𝑦v3 + 𝑛3 (𝑥w − 𝑥)3+𝑦w3

𝑥w
𝑦v

𝑦w



Principio de Fermat y Ley de Snell

𝑥w
𝑦v

𝑦w

𝑦v3

𝑦v3

𝑦v3



Ley de Snell

𝑥w
𝑦v

𝑦w

𝑦v3



n2>>n1

Los frentes de onda son 
contínuos
𝜆1 =

x
yz
> 𝜆3 =

x
y{



Ley de Reflexión

• Cuando una onda electromagnética 
propagándose en un medio de índice 
𝑛1 llega a una interfase con otro 
medio de índice 𝑛3 además de 
refractarse, hay una porción que se 
refleja:

• Si el rayo (en la dirección del vector 𝑘) 
incidente forma un ángulo 𝜃} con la 
normal a la interfase, la ley de 
reflexión dice que si 𝜃~ es el ángulo 
del rayo reflejado :

𝜃} = 𝜃~



Ley de reflexión y frentes de onda



Reflexión y Refracción en el plano de 
incidencia

https://phet.colorado.edu/en/simulation/bending-light



Placas plano paralelas

Supongamos una placa de caras paralelas planas de
vidrio en aire.

Aire

Vidrio

Aire

Interfase I

Interfase II



Placas plano paralelas

Aire

Vidrio

Aire

Interfase I

Interfase II

El rayo emerge con la misma 
dirección con la que ingresó 
pero desplazado.



Reflexión total interna

• 𝑛� < 𝑛}

• El ángulo crítico
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EXAMPLE 4.6

Consider a beam of unpolarized light in air arriving at the flat 
surface of a glass sheet (n = 1.50) at the polarization angle up. 
Considering Fig. 4.49 and the E-field oscillating parallel to the 
incident plane, determine Ri and then show by direct computa-
tion that Ti = 1.0. Since ri = 0, why is ti Z 1?

SOLUTION
From Eq. (4.62)

Ri = r i
2  and  ri = 0

hence Ri = 0

and no light is reflected. On the other hand, from Eq. (4.64)

Ti = ant cos ut

ni cos ui
b t i

2

Using Fig. 4.49 and Eq. 4.41 ti = 0.667 at ui = up = 56.3°, and 
since ui + ut = 90.0°, ut = 33.7°, consequently

Ti = 1.5 cos 33.7°
1.0 cos 56.3°

 (0.667)2

Ti = 1.00

All the light is transmitted. Conservation of energy in a lossless 
medium tells us that Ri + Ti = 1; it does not say that ri + ti = 1.

Suppose that we have a source embedded in an optically dense 
medium, and we allow ui to increase gradually, as indicated in 
Fig. 4.59. We know from the preceding section (Fig. 4.50) that ri 
and r# increase with increasing ui, and therefore ti and t# both 
decrease. Moreover ut 7 ui, since

sin ui =
nt

ni
 sin ut

and ni 7 nt, in which case nti 6 1. Thus as ui becomes larger, the 
transmitted ray gradually approaches tangency with the bound-
ary, and as it does more and more of the available energy appears 
in the reflected beam. Finally, when ut = 90°, sin ut = 1 and

 sin uc = nti  (4.69)

As noted earlier, the critical angle is that special value of ui 
for which ut = 90°. The larger ni is, the smaller nti is, and the 
smaller uc is. For incident angles greater than or equal to uc, 
all the incoming energy is reflected back into the incident 
medium in the process known as total internal reflection 
(see photo at top of next page).

It should be stressed that the transition from the conditions 
depicted in Fig. 4.59a to those of 4.59d  takes place without any 
discontinuities. As ui becomes larger, the reflected beam grows 
stronger and stronger while the transmitted beam grows weaker, 
until the latter vanishes and the former carries off all the energy 
at ur = uc. It’s an easy matter to observe the diminution of the 
transmitted beam as ui is made larger. Just place a glass micro-
scope slide on a printed page, this time blocking out any specu-
larly reflected light. At ui ≈ 0, ut is roughly zero, and the page 
as seen through the glass is fairly bright and clear. But if you 
move your head, allowing ut (the angle at which you view the 
interface) to increase, the region of the printed page covered by 
the glass will appear darker and darker, indicating that T has 
indeed been markedly reduced.

The critical angle for our air–glass interface is roughly 42° 
(see Table 4.3). Consequently, a ray incident normally on the 
left face of either of the prisms in Fig. 4.60 will have a ui 7 42° 
and therefore be internally reflected. This is a convenient way 
to reflect nearly 100% of the incident light without having to 

4%

ut

urui

25%

n i ! n t

6%

38%

n t

n i

100%

90°

42° 42° 100%

(a) (b) (c)

(d) (e) (f)

ui = uc ur = uc
ui !uc ur = ui

Figure 4.59  Internal reflection and the critical  
angle. (Educational Services, Inc.)

4.7 Total Internal Reflection

In the previous section it was evident that something rather inter-
esting was happening in the case of internal reflection  
(ni 7 nt) when ui was equal to or greater than uc, the so-called 
critical angle. Let’s now return to that situation for a closer look. 
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since ui + ut = 90.0°, ut = 33.7°, consequently

Ti = 1.5 cos 33.7°
1.0 cos 56.3°

 (0.667)2

Ti = 1.00

All the light is transmitted. Conservation of energy in a lossless 
medium tells us that Ri + Ti = 1; it does not say that ri + ti = 1.

Suppose that we have a source embedded in an optically dense 
medium, and we allow ui to increase gradually, as indicated in 
Fig. 4.59. We know from the preceding section (Fig. 4.50) that ri 
and r# increase with increasing ui, and therefore ti and t# both 
decrease. Moreover ut 7 ui, since

sin ui =
nt

ni
 sin ut

and ni 7 nt, in which case nti 6 1. Thus as ui becomes larger, the 
transmitted ray gradually approaches tangency with the bound-
ary, and as it does more and more of the available energy appears 
in the reflected beam. Finally, when ut = 90°, sin ut = 1 and

 sin uc = nti  (4.69)

As noted earlier, the critical angle is that special value of ui 
for which ut = 90°. The larger ni is, the smaller nti is, and the 
smaller uc is. For incident angles greater than or equal to uc, 
all the incoming energy is reflected back into the incident 
medium in the process known as total internal reflection 
(see photo at top of next page).

It should be stressed that the transition from the conditions 
depicted in Fig. 4.59a to those of 4.59d  takes place without any 
discontinuities. As ui becomes larger, the reflected beam grows 
stronger and stronger while the transmitted beam grows weaker, 
until the latter vanishes and the former carries off all the energy 
at ur = uc. It’s an easy matter to observe the diminution of the 
transmitted beam as ui is made larger. Just place a glass micro-
scope slide on a printed page, this time blocking out any specu-
larly reflected light. At ui ≈ 0, ut is roughly zero, and the page 
as seen through the glass is fairly bright and clear. But if you 
move your head, allowing ut (the angle at which you view the 
interface) to increase, the region of the printed page covered by 
the glass will appear darker and darker, indicating that T has 
indeed been markedly reduced.

The critical angle for our air–glass interface is roughly 42° 
(see Table 4.3). Consequently, a ray incident normally on the 
left face of either of the prisms in Fig. 4.60 will have a ui 7 42° 
and therefore be internally reflected. This is a convenient way 
to reflect nearly 100% of the incident light without having to 

4%

ut

urui

25%

n i ! n t

6%

38%

n t

n i

100%

90°

42° 42° 100%

(a) (b) (c)

(d) (e) (f)

ui = uc ur = uc
ui !uc ur = ui

Figure 4.59  Internal reflection and the critical  
angle. (Educational Services, Inc.)

4.7 Total Internal Reflection

In the previous section it was evident that something rather inter-
esting was happening in the case of internal reflection  
(ni 7 nt) when ui was equal to or greater than uc, the so-called 
critical angle. Let’s now return to that situation for a closer look. 
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medium in the process known as total internal reflection 
(see photo at top of next page).

It should be stressed that the transition from the conditions 
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stronger and stronger while the transmitted beam grows weaker, 
until the latter vanishes and the former carries off all the energy 
at ur = uc. It’s an easy matter to observe the diminution of the 
transmitted beam as ui is made larger. Just place a glass micro-
scope slide on a printed page, this time blocking out any specu-
larly reflected light. At ui ≈ 0, ut is roughly zero, and the page 
as seen through the glass is fairly bright and clear. But if you 
move your head, allowing ut (the angle at which you view the 
interface) to increase, the region of the printed page covered by 
the glass will appear darker and darker, indicating that T has 
indeed been markedly reduced.

The critical angle for our air–glass interface is roughly 42° 
(see Table 4.3). Consequently, a ray incident normally on the 
left face of either of the prisms in Fig. 4.60 will have a ui 7 42° 
and therefore be internally reflected. This is a convenient way 
to reflect nearly 100% of the incident light without having to 
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In the previous section it was evident that something rather inter-
esting was happening in the case of internal reflection  
(ni 7 nt) when ui was equal to or greater than uc, the so-called 
critical angle. Let’s now return to that situation for a closer look. 

M04_HECH6933_05_GE_C04.indd   133 26/08/16   1:10 PM



Óptica Geométrica



Sistemas ópticos

• Una fuente puntual envía 
ondas esféricas.
• Un cono de rayos entra al 

sistema óptico, el cual hace 
que los rayos converjan a un 
punto P.
• Los frentes de ondas se 

invierten 
• Si nada para la luz en P, las 

ondas o rayos continúan su 
camino. 
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the wave slows upon entering the new substance. The central 
area of the wavefront travels more slowly than its outer extrem-
ities, which are still moving quickly through the incident me-
dium. These extremities overtake the midregion, continuously 

spreading out and weakening as it progresses. In just the reverse, 
it’s frequently necessary to collect incoming parallel rays and 
bring them together at a point, thereby focusing the energy, as is 
done with a burning-glass or a telescope lens. Moreover, since 
the light reflected from someone’s face scatters out from billions 
of point sources, a lens that causes each diverging wavelet to 
converge could form an image of that face (Fig. 5.2).

5.2.1 Aspherical Surfaces

To see how a lens works, imagine that we interpose in the path 
of a wave a transparent substance in which the wave’s speed  
is different than it was initially. Figure 5.3a presents a cross-
sectional view of a diverging spherical wave traveling in an in-
cident medium of index n i impinging on the curved interface of 
a transmitting medium of index n t. When n t is greater than n i, 

Figure 5.2  A person’s face, like 
everything else we ordinarily see in 
reflected light, is covered with countless 
atomic scatterers.

(b)

(c)

A D

S
F1 F2

n i = 1
n t D!

S

(a)

Figure 5.3  A hyperbolic interface between air and glass. (a) The wave-
fronts bend and straighten out. (b) The rays become parallel. (c) The hyper-
bola is such that the optical path from S to A to D is the same no matter 
where A is.
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S

Figure 5.1  Conjugate foci. (a) A point source  
S sends out spherical waves. A cone of rays enters 
an optical system that inverts the wavefronts, 
causing them to converge on point-P. (b) In cross 
section rays diverge from S, and a portion of them 
converge to P. If nothing stops the light at P, it 
continues on.
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Sistemas ópticos

• Dioptras

• Lentes

• Espejos



Superficies esféricas

• La longitud de camino óptico entre S y P 
es:

• Usando el teorema del coseno en 
triángulos SAC y APC y recordando que 
cos𝜑 = −cos(180� − 𝜑):
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point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 

TABLE 5.1 Sign Convention for Spherical 
Refracting Surfaces and Thin Lenses* 
(Light Entering from the Let?) 

+ left of V 

+ left of F,, 

+ right of V 

+ right of F, 

+ if (' i \  right of V 

+ above opt~cal ar l \  

'This table anticipates the irnm~nent ~ntroduct~on of a few quantl- 
ties not yet spoken of. 

we have 

n,R(s,, + R )  \in cp trlR(s, - R )  sin cp 
- = o  (5.4) 

2C,, 2 t 1  

from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
Recall that 

I f  we asjume small values o f  cp (i.e., A close to V ) ,  cos cp = 1 .  
Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 

4, -- A , ,  and to that approximation 

W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
r~nrrging wtrvqfront segtnent rorr-esponcling to these pclrelxicll 
rL1y.s is e~.set~tie~lly ~phericrd trncl wil1,fi)rni tr "per-krt" itnerge 
rrt its crnter P loc~ited rlt s ,  . Notice that Eq. (5.8) is indepen- 
dent o f  the location o f  A over a small area about the symmetry 
axis, namely, the pot-crxiell region. Gauss, in 1841, was the first 
to give a systematic exposition o f  the formation o f  images 
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Using the law of cosines in triangles SAC and ACP along with 
the fact that cos w = -cos(180° - w), we get

/o = [R2 + (so + R)2 - 2R(so + R) cos w]1>2
and /i = [R2 + (si - R)2 + 2R(si - R) cos w]1>2 

The OPL can be rewritten as

OPL = n1[R2 + (so + R)2 - 2R(so + R) cos w]1>2
 + n2[R2 + (si - R)2 + 2R(si - R) cos w]1>2
All the quantities in the diagram (si, so, R, etc.) are positive 
numbers, and these form the basis of a sign convention that is 
gradually unfolding and to which we shall return time and again 
(see Table 5.1). Inasmuch as the point-A moves at the end of a 
fixed radius (i.e., R 5 constant), w is the position variable, and 
thus setting d(OPL)>dw = 0, via Fermat’s Principle we have

 
n1R(so + R) sin w

2/o
-

n2R(si - R) sin w
2/i

= 0 (5.4)

from which it follows that

 
n1

/o
+

n2

/i
= 1

R
 an2si

/i
-

n1so

/o
b (5.5)

become more spherical (see photo). Such surfaces are com-
monly generated in batches by automatic grinding and polish-
ing machines.

Not surprisingly, the vast majority of quality lenses in use 
today have surfaces that are segments of spheres. Our intent 
here is to establish techniques for using such surfaces to simul-
taneously image a great many object points in light composed 
of a broad range of frequencies. Image errors, known as aber-
rations, will occur, but it is possible with the present technology 
to construct high-quality spherical lens systems whose aberra-
tions are so well controlled that image fidelity is limited only by 
diffraction.

Figure 5.6 depicts a wave from the point source S imping-
ing on a spherical interface of radius R centered at C. The 
point-V is called the vertex of the surface. The length so = SV 
is known as the object distance. The ray SA will be refracted 
at the interface toward the local normal (n2 7 n1) and there-
fore toward the central or optical axis. Assume that at some 
point-P the ray will cross the axis, as will all other rays inci-
dent at the same angle ui (Fig. 5.7). The length si = VP is the 
image distance. Fermat’s Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question,

 OPL = n1/o + n2/i (5.3)

Polishing a spherical lens. (Optical Society of America)
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Figure 5.6  
Refraction at a 
spherical interface. 
Conjugate foci.

S

P

Figure 5.7  Rays incident at the same angle.

TABLE 5.1  Sign Convention for Spherical Refracting 
Surfaces and Thin Lenses* (Light Entering from the Left)

so, ƒo 1 left of V

xo 1 left of Fo

si, ƒi 1 right of V

xi 1 right of Fi

R 1 if C is right of V

yo, yi 1 above optical axis

*This table anticipates the imminent introduction of a few quantities not yet  
spoken of.
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Superficies esféricas

• Entonces

• Minimizando el OPL con respecto a 
𝜑

• Tenemos que
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point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 

TABLE 5.1 Sign Convention for Spherical 
Refracting Surfaces and Thin Lenses* 
(Light Entering from the Let?) 

+ left of V 

+ left of F,, 

+ right of V 

+ right of F, 

+ if (' i \  right of V 

+ above opt~cal ar l \  

'This table anticipates the irnm~nent ~ntroduct~on of a few quantl- 
ties not yet spoken of. 

we have 

n,R(s,, + R )  \in cp trlR(s, - R )  sin cp 
- = o  (5.4) 

2C,, 2 t 1  

from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
Recall that 

I f  we asjume small values o f  cp (i.e., A close to V ) ,  cos cp = 1 .  
Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 

4, -- A , ,  and to that approximation 

W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
r~nrrging wtrvqfront segtnent rorr-esponcling to these pclrelxicll 
rL1y.s is e~.set~tie~lly ~phericrd trncl wil1,fi)rni tr "per-krt" itnerge 
rrt its crnter P loc~ited rlt s ,  . Notice that Eq. (5.8) is indepen- 
dent o f  the location o f  A over a small area about the symmetry 
axis, namely, the pot-crxiell region. Gauss, in 1841, was the first 
to give a systematic exposition o f  the formation o f  images 

154 Chapter 5 Geornetr~cal Opt~cs 

point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
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is gradually unfolding and to which we shall return time and 
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from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
Recall that 

I f  we asjume small values o f  cp (i.e., A close to V ) ,  cos cp = 1 .  
Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 

4, -- A , ,  and to that approximation 

W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
r~nrrging wtrvqfront segtnent rorr-esponcling to these pclrelxicll 
rL1y.s is e~.set~tie~lly ~phericrd trncl wil1,fi)rni tr "per-krt" itnerge 
rrt its crnter P loc~ited rlt s ,  . Notice that Eq. (5.8) is indepen- 
dent o f  the location o f  A over a small area about the symmetry 
axis, namely, the pot-crxiell region. Gauss, in 1841, was the first 
to give a systematic exposition o f  the formation o f  images 
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Using the law of cosines in triangles SAC and ACP along with 
the fact that cos w = -cos(180° - w), we get

/o = [R2 + (so + R)2 - 2R(so + R) cos w]1>2
and /i = [R2 + (si - R)2 + 2R(si - R) cos w]1>2 

The OPL can be rewritten as

OPL = n1[R2 + (so + R)2 - 2R(so + R) cos w]1>2
 + n2[R2 + (si - R)2 + 2R(si - R) cos w]1>2
All the quantities in the diagram (si, so, R, etc.) are positive 
numbers, and these form the basis of a sign convention that is 
gradually unfolding and to which we shall return time and again 
(see Table 5.1). Inasmuch as the point-A moves at the end of a 
fixed radius (i.e., R 5 constant), w is the position variable, and 
thus setting d(OPL)>dw = 0, via Fermat’s Principle we have

 
n1R(so + R) sin w
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-

n2R(si - R) sin w
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= 0 (5.4)

from which it follows that
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become more spherical (see photo). Such surfaces are com-
monly generated in batches by automatic grinding and polish-
ing machines.

Not surprisingly, the vast majority of quality lenses in use 
today have surfaces that are segments of spheres. Our intent 
here is to establish techniques for using such surfaces to simul-
taneously image a great many object points in light composed 
of a broad range of frequencies. Image errors, known as aber-
rations, will occur, but it is possible with the present technology 
to construct high-quality spherical lens systems whose aberra-
tions are so well controlled that image fidelity is limited only by 
diffraction.

Figure 5.6 depicts a wave from the point source S imping-
ing on a spherical interface of radius R centered at C. The 
point-V is called the vertex of the surface. The length so = SV 
is known as the object distance. The ray SA will be refracted 
at the interface toward the local normal (n2 7 n1) and there-
fore toward the central or optical axis. Assume that at some 
point-P the ray will cross the axis, as will all other rays inci-
dent at the same angle ui (Fig. 5.7). The length si = VP is the 
image distance. Fermat’s Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question,

 OPL = n1/o + n2/i (5.3)

Polishing a spherical lens. (Optical Society of America)
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spherical interface. 
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Figure 5.7  Rays incident at the same angle.

TABLE 5.1  Sign Convention for Spherical Refracting 
Surfaces and Thin Lenses* (Light Entering from the Left)

so, ƒo 1 left of V

xo 1 left of Fo

si, ƒi 1 right of V

xi 1 right of Fi

R 1 if C is right of V

yo, yi 1 above optical axis

*This table anticipates the imminent introduction of a few quantities not yet  
spoken of.

M05_HECH6933_05_GE_C05.indd   163 26/08/16   1:32 PM

154 Chapter 5 Geornetr~cal Opt~cs 

point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 

TABLE 5.1 Sign Convention for Spherical 
Refracting Surfaces and Thin Lenses* 
(Light Entering from the Let?) 

+ left of V 

+ left of F,, 

+ right of V 

+ right of F, 

+ if (' i \  right of V 

+ above opt~cal ar l \  

'This table anticipates the irnm~nent ~ntroduct~on of a few quantl- 
ties not yet spoken of. 

we have 

n,R(s,, + R )  \in cp trlR(s, - R )  sin cp 
- = o  (5.4) 

2C,, 2 t 1  

from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
Recall that 

I f  we asjume small values o f  cp (i.e., A close to V ) ,  cos cp = 1 .  
Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 

4, -- A , ,  and to that approximation 

W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
r~nrrging wtrvqfront segtnent rorr-esponcling to these pclrelxicll 
rL1y.s is e~.set~tie~lly ~phericrd trncl wil1,fi)rni tr "per-krt" itnerge 
rrt its crnter P loc~ited rlt s ,  . Notice that Eq. (5.8) is indepen- 
dent o f  the location o f  A over a small area about the symmetry 
axis, namely, the pot-crxiell region. Gauss, in 1841, was the first 
to give a systematic exposition o f  the formation o f  images 
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point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 

TABLE 5.1 Sign Convention for Spherical 
Refracting Surfaces and Thin Lenses* 
(Light Entering from the Let?) 

+ left of V 

+ left of F,, 
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'This table anticipates the irnm~nent ~ntroduct~on of a few quantl- 
ties not yet spoken of. 

we have 

n,R(s,, + R )  \in cp trlR(s, - R )  sin cp 
- = o  (5.4) 

2C,, 2 t 1  

from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
Recall that 

I f  we asjume small values o f  cp (i.e., A close to V ) ,  cos cp = 1 .  
Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 

4, -- A , ,  and to that approximation 

W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
r~nrrging wtrvqfront segtnent rorr-esponcling to these pclrelxicll 
rL1y.s is e~.set~tie~lly ~phericrd trncl wil1,fi)rni tr "per-krt" itnerge 
rrt its crnter P loc~ited rlt s ,  . Notice that Eq. (5.8) is indepen- 
dent o f  the location o f  A over a small area about the symmetry 
axis, namely, the pot-crxiell region. Gauss, in 1841, was the first 
to give a systematic exposition o f  the formation o f  images 

154 Chapter 5 Geornetr~cal Opt~cs 

point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 
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(Light Entering from the Let?) 
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'This table anticipates the irnm~nent ~ntroduct~on of a few quantl- 
ties not yet spoken of. 

we have 

n,R(s,, + R )  \in cp trlR(s, - R )  sin cp 
- = o  (5.4) 

2C,, 2 t 1  

from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
Recall that 

I f  we asjume small values o f  cp (i.e., A close to V ) ,  cos cp = 1 .  
Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 

4, -- A , ,  and to that approximation 

W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
r~nrrging wtrvqfront segtnent rorr-esponcling to these pclrelxicll 
rL1y.s is e~.set~tie~lly ~phericrd trncl wil1,fi)rni tr "per-krt" itnerge 
rrt its crnter P loc~ited rlt s ,  . Notice that Eq. (5.8) is indepen- 
dent o f  the location o f  A over a small area about the symmetry 
axis, namely, the pot-crxiell region. Gauss, in 1841, was the first 
to give a systematic exposition o f  the formation o f  images 
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Using the law of cosines in triangles SAC and ACP along with 
the fact that cos w = -cos(180° - w), we get

/o = [R2 + (so + R)2 - 2R(so + R) cos w]1>2
and /i = [R2 + (si - R)2 + 2R(si - R) cos w]1>2 

The OPL can be rewritten as

OPL = n1[R2 + (so + R)2 - 2R(so + R) cos w]1>2
 + n2[R2 + (si - R)2 + 2R(si - R) cos w]1>2
All the quantities in the diagram (si, so, R, etc.) are positive 
numbers, and these form the basis of a sign convention that is 
gradually unfolding and to which we shall return time and again 
(see Table 5.1). Inasmuch as the point-A moves at the end of a 
fixed radius (i.e., R 5 constant), w is the position variable, and 
thus setting d(OPL)>dw = 0, via Fermat’s Principle we have

 
n1R(so + R) sin w

2/o
-

n2R(si - R) sin w
2/i

= 0 (5.4)

from which it follows that
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become more spherical (see photo). Such surfaces are com-
monly generated in batches by automatic grinding and polish-
ing machines.

Not surprisingly, the vast majority of quality lenses in use 
today have surfaces that are segments of spheres. Our intent 
here is to establish techniques for using such surfaces to simul-
taneously image a great many object points in light composed 
of a broad range of frequencies. Image errors, known as aber-
rations, will occur, but it is possible with the present technology 
to construct high-quality spherical lens systems whose aberra-
tions are so well controlled that image fidelity is limited only by 
diffraction.

Figure 5.6 depicts a wave from the point source S imping-
ing on a spherical interface of radius R centered at C. The 
point-V is called the vertex of the surface. The length so = SV 
is known as the object distance. The ray SA will be refracted 
at the interface toward the local normal (n2 7 n1) and there-
fore toward the central or optical axis. Assume that at some 
point-P the ray will cross the axis, as will all other rays inci-
dent at the same angle ui (Fig. 5.7). The length si = VP is the 
image distance. Fermat’s Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question,

 OPL = n1/o + n2/i (5.3)

Polishing a spherical lens. (Optical Society of America)
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Figure 5.6  
Refraction at a 
spherical interface. 
Conjugate foci.
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Figure 5.7  Rays incident at the same angle.

TABLE 5.1  Sign Convention for Spherical Refracting 
Surfaces and Thin Lenses* (Light Entering from the Left)

so, ƒo 1 left of V

xo 1 left of Fo

si, ƒi 1 right of V

xi 1 right of Fi

R 1 if C is right of V

yo, yi 1 above optical axis

*This table anticipates the imminent introduction of a few quantities not yet  
spoken of.
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Aproximación paraxial

• Para simplificar las expresiones, vamos a 
suponer que los rayos son casi paralelos 
al eje óptico. Esto implica que cos𝜑 ≈ 1
(𝜑 muy pequeño) y entonces:

𝑙( ≈ 𝑠( y 𝑙} ≈ 𝑠}
• Con esto, la condición de longitud de 

camino óptico mínimo nos da:
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point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 

TABLE 5.1 Sign Convention for Spherical 
Refracting Surfaces and Thin Lenses* 
(Light Entering from the Let?) 

+ left of V 

+ left of F,, 

+ right of V 

+ right of F, 

+ if (' i \  right of V 

+ above opt~cal ar l \  

'This table anticipates the irnm~nent ~ntroduct~on of a few quantl- 
ties not yet spoken of. 

we have 

n,R(s,, + R )  \in cp trlR(s, - R )  sin cp 
- = o  (5.4) 

2C,, 2 t 1  

from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
Recall that 

I f  we asjume small values o f  cp (i.e., A close to V ) ,  cos cp = 1 .  
Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 

4, -- A , ,  and to that approximation 

W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
r~nrrging wtrvqfront segtnent rorr-esponcling to these pclrelxicll 
rL1y.s is e~.set~tie~lly ~phericrd trncl wil1,fi)rni tr "per-krt" itnerge 
rrt its crnter P loc~ited rlt s ,  . Notice that Eq. (5.8) is indepen- 
dent o f  the location o f  A over a small area about the symmetry 
axis, namely, the pot-crxiell region. Gauss, in 1841, was the first 
to give a systematic exposition o f  the formation o f  images 

Ecuación de la dioptra en aproximación paraxial
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Using the law of cosines in triangles SAC and ACP along with 
the fact that cos w = -cos(180° - w), we get

/o = [R2 + (so + R)2 - 2R(so + R) cos w]1>2
and /i = [R2 + (si - R)2 + 2R(si - R) cos w]1>2 

The OPL can be rewritten as

OPL = n1[R2 + (so + R)2 - 2R(so + R) cos w]1>2
 + n2[R2 + (si - R)2 + 2R(si - R) cos w]1>2
All the quantities in the diagram (si, so, R, etc.) are positive 
numbers, and these form the basis of a sign convention that is 
gradually unfolding and to which we shall return time and again 
(see Table 5.1). Inasmuch as the point-A moves at the end of a 
fixed radius (i.e., R 5 constant), w is the position variable, and 
thus setting d(OPL)>dw = 0, via Fermat’s Principle we have
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become more spherical (see photo). Such surfaces are com-
monly generated in batches by automatic grinding and polish-
ing machines.

Not surprisingly, the vast majority of quality lenses in use 
today have surfaces that are segments of spheres. Our intent 
here is to establish techniques for using such surfaces to simul-
taneously image a great many object points in light composed 
of a broad range of frequencies. Image errors, known as aber-
rations, will occur, but it is possible with the present technology 
to construct high-quality spherical lens systems whose aberra-
tions are so well controlled that image fidelity is limited only by 
diffraction.

Figure 5.6 depicts a wave from the point source S imping-
ing on a spherical interface of radius R centered at C. The 
point-V is called the vertex of the surface. The length so = SV 
is known as the object distance. The ray SA will be refracted 
at the interface toward the local normal (n2 7 n1) and there-
fore toward the central or optical axis. Assume that at some 
point-P the ray will cross the axis, as will all other rays inci-
dent at the same angle ui (Fig. 5.7). The length si = VP is the 
image distance. Fermat’s Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
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 OPL = n1/o + n2/i (5.3)

Polishing a spherical lens. (Optical Society of America)
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Figure 5.6  
Refraction at a 
spherical interface. 
Conjugate foci.

S

P

Figure 5.7  Rays incident at the same angle.

TABLE 5.1  Sign Convention for Spherical Refracting 
Surfaces and Thin Lenses* (Light Entering from the Left)

so, ƒo 1 left of V

xo 1 left of Fo

si, ƒi 1 right of V

xi 1 right of Fi

R 1 if C is right of V

yo, yi 1 above optical axis

*This table anticipates the imminent introduction of a few quantities not yet  
spoken of.
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Convención de signos para dioptras y lentes 
delgadas (Hecht)

𝑠(, 𝑓( Positivo a la izquierda de 𝑉
𝑥( Positivo a la izquierda de 𝐹(
𝑠}, 𝑓} Positivo a la derecha de 𝑉
𝑥} Positivo a la derecha de 𝐹}
𝑅 Positivo si 𝐶 está a la derecha de 𝑉

𝑦(, 𝑦} Positivo por encima del eje óptico



Foco objeto

• Si el punto 𝐹( tiene imagen en el ∞ tenemos:

• Entonces 𝑓( es la distancia focal objeto y se 
define como:

5.2 Lenses 155 
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-= F, : - , - . / - C / - _  - v * 
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I. I 
1, P P 

Figure 5.8 Plane waves propagatmg beyond a spher~cal Interface- 
the object focus Figure 5.10 A v~rtual Image po~n t  

undcr the above approximation, and the result is variously 
known asfirst-order, prwtr.rir11. or Gaussian Optics. It soon 
became the basic theoretical tool by which lenses would be 
designed for several decades to come. Tf the optical system is 
well corrected, an incident spherical wave will emerge in a 
fo rm very closely resembling a spherical wave. Consequently, 
as the perfection of the system increases, it morc closely 
approaches first-order theory. Deviations from that of paraxi- 
al analysis will provide a convenient measure of the quality of 
an actual optical device. 

If the point F,, in Fig. 5.8 is imaged at infinity (s, = x), we 
have 

n1 - n ,  11 + = 
. yo  'Jt R 

That special object distance is defined as the first focal length 
or the object focal length, s,, --,f;,, so that 

The point F,, is known as the first or object focus. Similarly, 

Figure 5.9 The reshaping of plane Into spherical waves at a spherical 
interface-the lrnage focus. 

the second or image focus is the axial point F,, where the 
image is formed when s,, = m; that is, 

Defining the second or image focal 1ength.h as equal to s, in 
this special case (Fig. 5.9). we have 

Recall that an image is virtual when the rays diverge from 
it (Fig. 5.10). Analogously, an object is virtual when the rays 
converge toward it (Fig. 5.1 1 ). Observe that the virtual object 
is now on the right-hand side of the vertex, and therefore s,, 
will be a negative quantity. Moreover, the surface is concave, 
and its radius will also be negative, as required by Eq. (5.9). 
since,f;, would be negative. In the same way, the virtual image 
distance appearing to the left of Vis negative. 

Figure 5.11 
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That special object distance is defined as the first focal length 
or the object focal length, so K ƒo, so that

 ƒo =
n1

n2 - n1
 R (5.9)

Point-Fo is known as the first or object focus. Similarly, the 
second or image focus is the axial point-Fi, where the image is 
formed when so = ∞ ; that is,

n1

∞
+

n2

si
=

n2 - n1

R

Defining the second or image focal length ƒi as equal to si in 
this special case (Fig. 5.9), we have

 ƒi =
n2

n2 - n1
 R (5.10)

Recall that an image is virtual when the rays diverge from it 
(Fig. 5.10). Analogously, an object is virtual when the rays 
converge toward it (Fig. 5.11). Observe that the virtual object is 
now on the right-hand side of the vertex, and therefore so will be 
a negative quantity. Moreover, the surface is concave, and its 
radius will also be negative, as required by Eq. (5.9), since ƒo
would be negative. In the same way, the virtual image distance 
appearing to the left of V is negative.

This is the relationship that must hold among the parameters 
for a ray going from S to P by way of refraction at the spheri-
cal interface. Although this expression is exact, it is rather 
complicated. If A is moved to a new location by changing w, 
the new ray will not intercept the optical axis at P. (See Prob-
lem 5.1 concerning the Cartesian oval, which is the interface 
configuration that would bring any ray, regardless of w, to P.) 
The approximations that are used to represent /o and /i, and 
thereby simplify Eq. (5.5), are crucial in all that is to follow. 
Recall that

 cos w = 1 -
w2

2!
+
w4

4!
-
w6

6!
+ g  (5.6)

and sin w = w -
w3

3!
+
w5

5!
-
w7

7!
+ g  (5.7)

If we assume small values of w (i.e., A close to V ), cos w ≈ 1.
Consequently, the expressions for /o and /i yield /o ≈ so, 
/i ≈ si, and to that approximation

 
n1

so
+

n2

si
=

n2 - n1

R
 (5.8)

We could have begun this derivation with Snell’s Law rather 
than Fermat’s Principle (Problem 5.5), in which case small  
values of w would have led to sin w ≈ w and Eq. (5.8) once 
again. This approximation delineates the domain of what is 
called first-order theory; we’ll examine third-order theory 
(sin w ≈ w - w3>3!) in the next chapter. Rays that arrive at 
shallow angles with respect to the optical axis (such that w 
and h are appropriately small) are known as paraxial rays. 
The emerging wavefront segment corresponding to these 
paraxial rays is essentially spherical and will form a “per-
fect” image at its center P located at si. Notice that Eq. (5.8) 
is independent of the location of A over a small area about 
the symmetry axis, namely, the paraxial region. Gauss, in 
1841, was the first to give a systematic exposition of the 
formation of images under the above approximation, and 
the result is variously known as first-order, paraxial, or 
Gaussian Optics. It soon became the basic theoretical tool 
by which lenses would be designed for several decades to 
come. If the optical system is well corrected, an incident 
spherical wave will emerge in a form very closely resem-
bling a spherical wave. Consequently, as the perfection of 
the system increases, it more closely approaches first-order 
theory. Deviations from that of paraxial analysis will pro-
vide a convenient measure of the quality of an actual optical 
device.

If point-Fo in Fig. 5.8 is imaged at infinity (si = ∞), we  
have

n1

so
+

n2

∞
=

n2 - n1

R

Fo

fo

Figure 5.8  Plane waves propagating beyond a spherical interface—the 
object focus.

fi

Fi
C

Figure 5.9  The reshaping of plane into spherical waves at a spherical 
interface—the image focus.

M05_HECH6933_05_GE_C05.indd   164 26/08/16   1:32 PM



Foco imagen
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That special object distance is defined as the first focal length 
or the object focal length, so K ƒo, so that

 ƒo =
n1

n2 - n1
 R (5.9)

Point-Fo is known as the first or object focus. Similarly, the 
second or image focus is the axial point-Fi, where the image is 
formed when so = ∞ ; that is,

n1

∞
+

n2

si
=

n2 - n1

R

Defining the second or image focal length ƒi as equal to si in 
this special case (Fig. 5.9), we have

 ƒi =
n2

n2 - n1
 R (5.10)

Recall that an image is virtual when the rays diverge from it 
(Fig. 5.10). Analogously, an object is virtual when the rays 
converge toward it (Fig. 5.11). Observe that the virtual object is 
now on the right-hand side of the vertex, and therefore so will be 
a negative quantity. Moreover, the surface is concave, and its 
radius will also be negative, as required by Eq. (5.9), since ƒo
would be negative. In the same way, the virtual image distance 
appearing to the left of V is negative.

This is the relationship that must hold among the parameters 
for a ray going from S to P by way of refraction at the spheri-
cal interface. Although this expression is exact, it is rather 
complicated. If A is moved to a new location by changing w, 
the new ray will not intercept the optical axis at P. (See Prob-
lem 5.1 concerning the Cartesian oval, which is the interface 
configuration that would bring any ray, regardless of w, to P.) 
The approximations that are used to represent /o and /i, and 
thereby simplify Eq. (5.5), are crucial in all that is to follow. 
Recall that
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If we assume small values of w (i.e., A close to V ), cos w ≈ 1.
Consequently, the expressions for /o and /i yield /o ≈ so, 
/i ≈ si, and to that approximation
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We could have begun this derivation with Snell’s Law rather 
than Fermat’s Principle (Problem 5.5), in which case small  
values of w would have led to sin w ≈ w and Eq. (5.8) once 
again. This approximation delineates the domain of what is 
called first-order theory; we’ll examine third-order theory 
(sin w ≈ w - w3>3!) in the next chapter. Rays that arrive at 
shallow angles with respect to the optical axis (such that w 
and h are appropriately small) are known as paraxial rays. 
The emerging wavefront segment corresponding to these 
paraxial rays is essentially spherical and will form a “per-
fect” image at its center P located at si. Notice that Eq. (5.8) 
is independent of the location of A over a small area about 
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1841, was the first to give a systematic exposition of the 
formation of images under the above approximation, and 
the result is variously known as first-order, paraxial, or 
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the system increases, it more closely approaches first-order 
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Imágenes y objetos virtuales

• Una imagen es virtual cuando 
los rayos divergen de ella. 
• Análogamente, un objeto es 

virtual cuando los rayos 
convergen hacia el. 
• Notar que el objeto virtual está 

en el lado derecho del vértice y 
por lo tanto va a ser una 
cantidad negativa
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are far more subtle in appearance (see photo). Most often a lens 
has two or more refracting interfaces, and at least one of these 
is curved. Generally, the nonplanar surfaces are centered on a 
common axis. These surfaces are most frequently spherical seg-
ments and are often coated with thin dielectric films to control 
their transmission properties (see Section 9.9).

A lens that consists of one element (i.e., it has only two re-
fracting surfaces) is a simple lens. The presence of more than 
one element makes it a compound lens. A lens is also classified 
as to whether it is thin or thick—that is, whether or not its thick-
ness is effectively negligible. We will limit ourselves, for the 
most part, to centered systems (for which all surfaces are rota-
tionally symmetric about a common axis) of spherical surfaces. 
Under these restrictions, the simple lens can take the forms 
shown in Fig. 5.12.

Lenses that are variously known as convex, converging, or 
positive are thicker at the center and so tend to decrease the 
radius of curvature of the wavefronts. In other words, the inci-
dent wave converges more as it traverses the lens, assuming, 
of course, that the index of the lens is greater than that of the 

EXAMPLE 5.2

A long horizontal flint-glass (ng = 1.800) cylinder is 20.0 cm in 
diameter and has a convex hemispherical left end ground and pol-
ished onto it. The device is immersed in ethyl alcohol (na = 1.361) 
and a tiny LED is located on the central axis in the liquid 80.0 cm 
to the left of the vertex of the hemisphere. Locate the image of 
the LED. What would happen if the alcohol was replaced by air?

SOLUTION 

Return to Eq. (5.8),

n1

so
+

n2

si
=

n2 - n1

R

Here n1 = 1.361, n2 = 1.800, so = +80.0 cm, and R =
+10.0 cm. We can work the problem in centimeters, where-
upon the equation becomes 

 
1.361
80.0

+ 1.800
si

= 1.800 - 1.361
10.0

 
1.800

si
= 0.439

10
- 1.361

80
 1.800 = (0.043 9 - 0.017 01)si

si = 66.9 cm

With the alcohol in place the image is within the glass, 66.9 cm 
to the right of the vertex (si 7 0). Removing the liquid,

1
80.0

+ 1.800
si

= 0.800
10.0

and

si = 26.7 cm

The refraction at the interface depends on the ratio (n2>n1) of 
the two indices. The bigger is (n2 - n1), the smaller will be si.

5.2.3 Thin Lenses

Lenses are made in a wide range of forms; for example, there 
are acoustic and microwave lenses. Some of the latter are made 
of glass or wax in easily recognizable shapes, whereas others 

V

Fo

so

C

Figure 5.11  A virtual object point.

VFi C

Figure 5.10  A virtual image point.

A lens for short-wavelength radiowaves. The disks serve to refract  
these waves much as rows of atoms refract light. (Optical Society of America)
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