Cálculo del campo magnético en un solenoide finito por ley de Biot-Savart

Solenoide

- Enrollado cilíndrico de un cable a paso (distancia entre una vuelta y la siguiente) constante.
- El recorrido del cable es helicoidal, pero si el enrollado es 'apretado' podemos ignorar la contribución al campo de la porción de cable paralelo al eje del cilindro e imaginar que un solenoide es un conjunto de espiras coaxiales del mismo radio apiladas.

Solenoide finito

- Supongamos un solenoide finito de largo L de densidad longitudinal de vueltas n y radio b por cuyo cable circula una corriente I.
- Calculemos el campo en el eje del solenoide.
- Podemos usar el campo de una espira circular en su eje de simetría en cualquier posición z.
- Tomemos la contribución del segmento definido por los ángulos polares θ y $\theta+d \theta$ al campo en la posición z (en blanco).

Solenoide finito

- El largo del segmento es:

$$
\frac{r d \theta}{\sin \theta}
$$

- Donde r es la distancia del punto de evaluación al borde del segmento.
- El campo del segmento en la posición z equivale al de una espira de corriente:

$$
\operatorname{In} \frac{r d \theta}{\sin \theta}
$$

- donde $n \frac{r d \theta}{\sin \theta}$ es la cantidad de vueltas que
 entran en el segmento

Solenoide finito

- Entonces tomando el resultado de la espira y recordando que $r=\frac{b}{\sin \theta}$:

$$
d B_{z}=\frac{\mu_{0} b^{2}}{2 r^{3}} \operatorname{In} \frac{r d \theta}{\sin \theta}=\frac{\mu_{0} I n}{2} \sin \theta d \theta
$$

- Tras lo cual solo resta integrar entre los límites $\theta_{1} \mathrm{y} \theta_{2}$.

$$
B_{z}=\frac{\mu_{0} I n}{2}\left(\cos \theta_{1}-\cos \theta_{2}\right)
$$

Solenoide finito

- Entonces tomando el resultado de la espira y recordando que $r=\frac{b}{\sin \theta}$:

$$
d B_{z}=\frac{\mu_{0} b^{2}}{2 r^{3}} \operatorname{In} \frac{r d \theta}{\sin \theta}=\frac{2 \pi I n}{c} \sin \theta d \theta
$$

- Tras lo cual solo resta integrar entre los límites $\theta_{1} y \theta_{2}$.

$$
B_{z}=\frac{\mu_{0} I n}{2}\left(\cos \theta_{1}-\cos \theta_{2}\right)
$$

- Si el solenoide es infinito $\theta_{1}=0$ y $\theta_{2}=\pi$ entonces dentro de el

$$
B_{z}=\mu_{0} I n
$$

Solenoide finito

