Coherencia

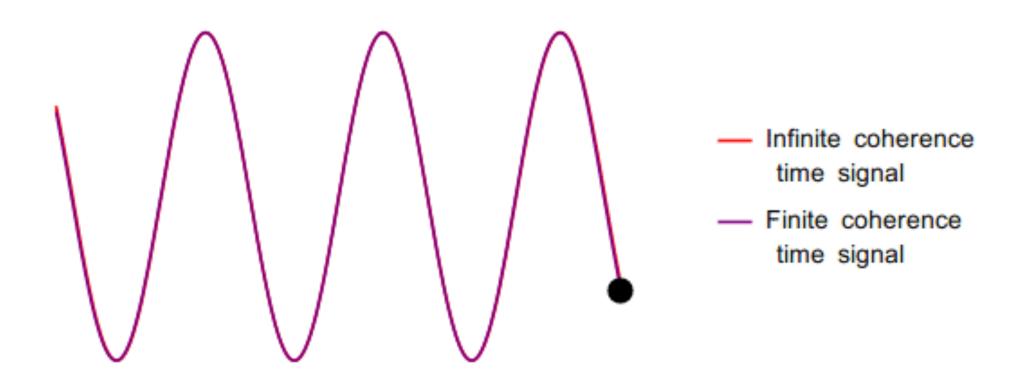
Coherencia temporal y espacial

• Los procesos de emisión de luz en general dan lugar a una serie de trenes de onda con diferentes fases iniciales aleatorias φ_i

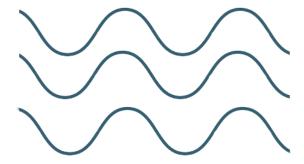
$$\vec{E}_i(\vec{r},t) = \vec{E}_{0i} \cos(\vec{k} \cdot \vec{r} - \omega t + \varphi_i)$$

- Coherencia temporal:
 - En la luz solar, sos trenes emitidos por una misma fuente mantienen su fase por alrededor de 10 períodos, por lo que se denomina **incoherente**. Algo parecido ocurre con la **polarización**.
 - Los lasers son fuentes de ondas con tiempo de coherencia más largos.
- Coherencia espacial: cuando la fuente no es puntual sino extendida, es la propiedad de que todas las fuentes que la componen emitan con la misma fase inicial.

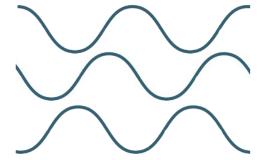
Pérdida de coherencia temporal entre dos ondas



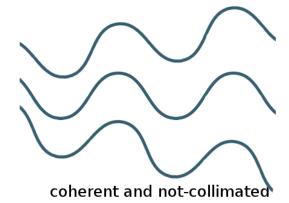
Incoherencia espacial



coherent and collimated

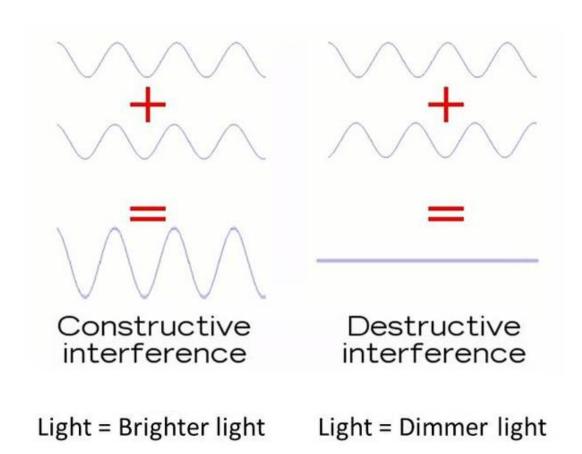


incoherent and collimated

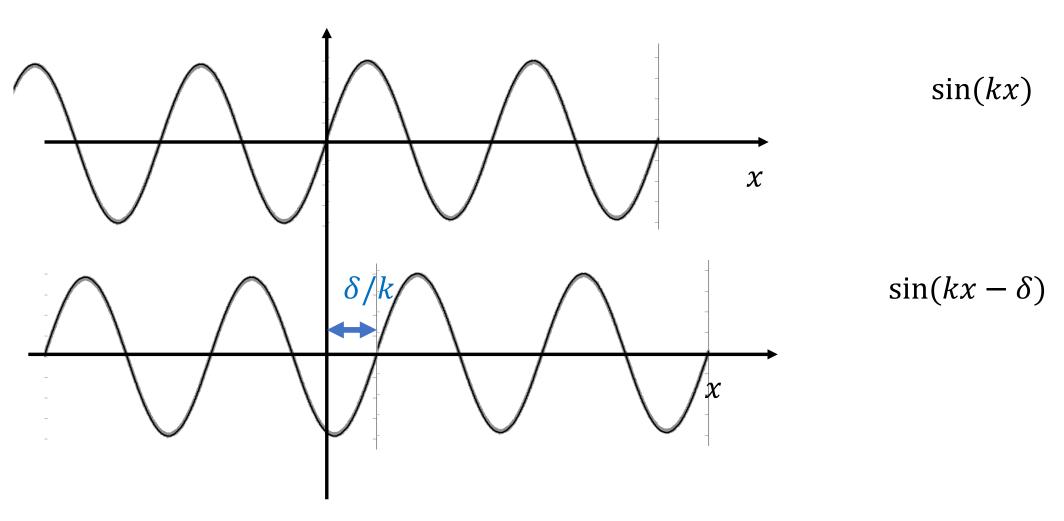


Interferencia

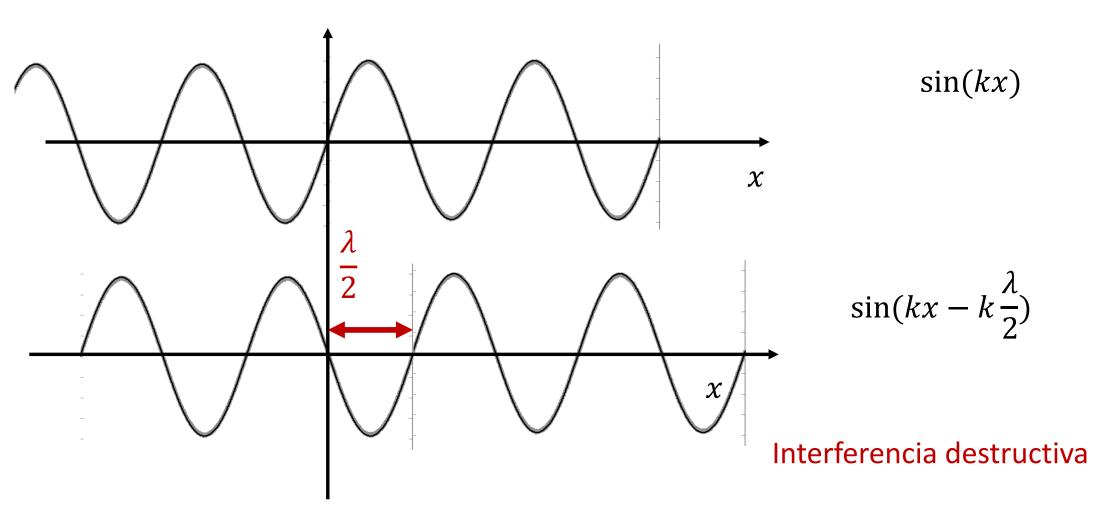
Interferencia constructiva versus destructiva



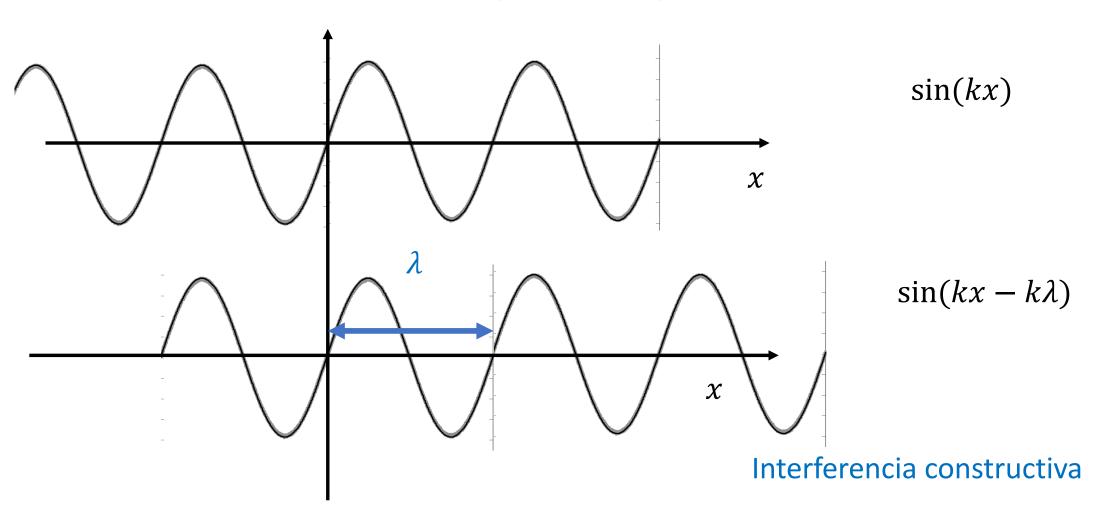
Suma de ondas de igual longitud de onda



Suma de ondas de igual longitud de onda



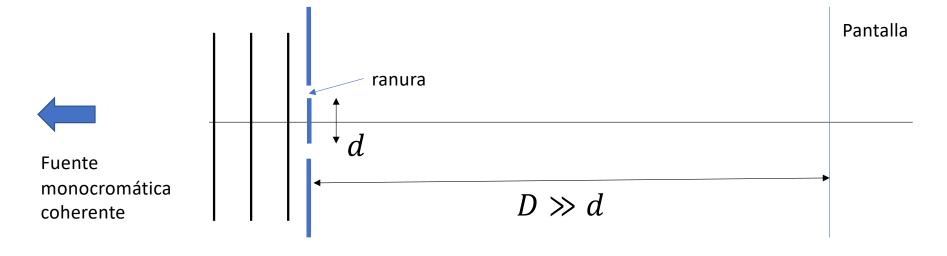
Suma de ondas de igual longitud de onda



Experimento de Young

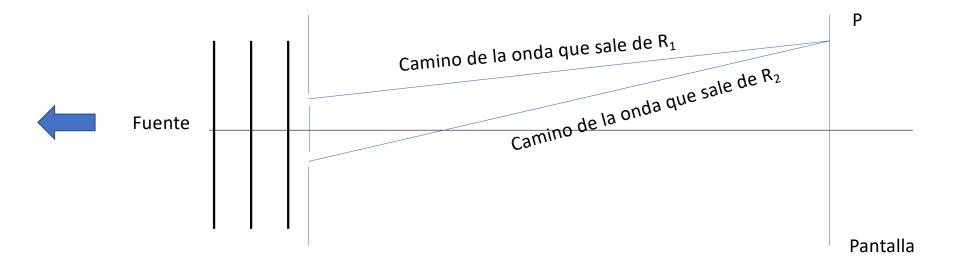
Experimento de Young (1801)

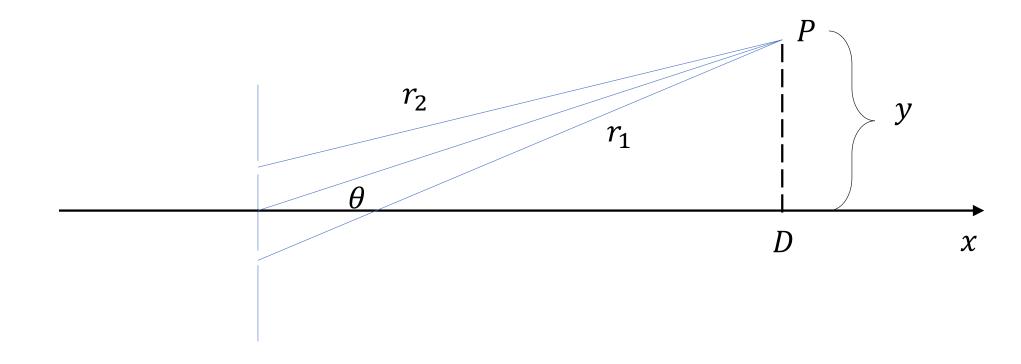
- Fuente de luz coherente con λ constante muy lejos de una pantalla con dos ranuras muy pequeñas equidistantes de un eje sobre el que está la fuente.
- ullet Distancia d entre ranuras, distancia D desde ranura a pantalla.
- Del otro lado, también muy lejos, hay una pantalla donde vemos el efecto.
- Pantalla con ranura, y pantalla donde vemos el efecto son ⊥ al eje de simetría.

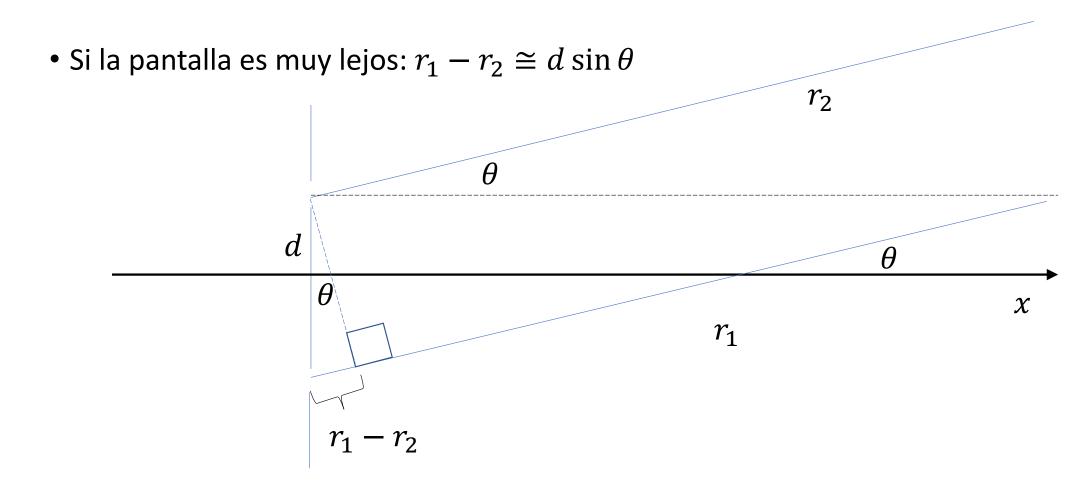


Experimento de Young (1801)

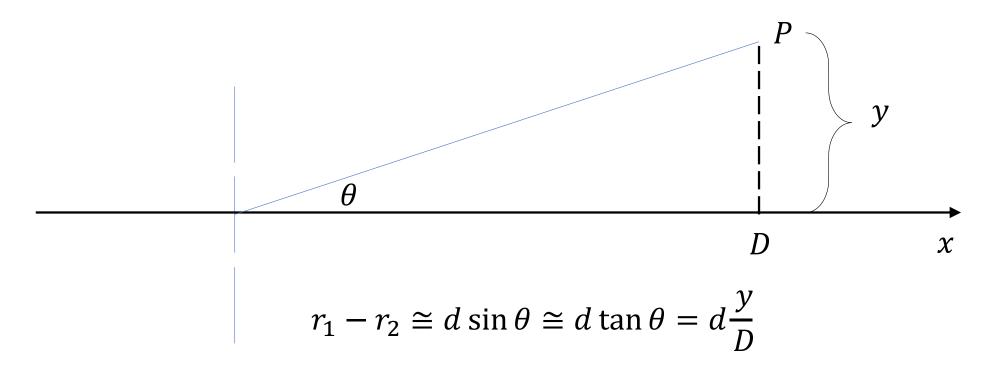
 La idea es que la diferencia de camino entre las ondas provenientes de las ranuras haga que los campos eléctricos en el punto P de la pantalla interfieran.







• Si la pantalla es muy lejos:



 Entonces, concluimos que la diferencia de camino entre la onda que sale de una rendija y la onda que sale de la otra al llegar a la pantalla es:

$$r_1 - r_2 \cong d \sin \theta = d \tan \theta = d \frac{y}{D}$$

• Esto implica un corrimiento de fase entre una y otra de

$$kd \sin \theta = kd \tan \theta = kd \frac{y}{D}$$

Interferencia constructiva

• Como vimos antes, la interferencia constructiva entre dos ondas ocurre cuando la diferencia de fase es:

$$\delta_{max} = kd \,\theta_{max} = kd \frac{y_{max}}{D} = k\lambda + 2n\pi \quad \text{con } n = 0,1,2 \dots$$

Pero también hay interferencia constructiva cuando

$$\delta = 0$$

• Entonces, reemplazando k e incluyendo 0 tenemos

$$\delta_{max} = kd \; \theta_{max} = kd \frac{y_{max}}{D} = 0, 2\pi, 4\pi, \dots 2n\pi \; \text{ con } n = 0,1,2 \dots$$

Interferencia constructiva

• En consecuencia, en la pantalla habrá interferencia constructiva en los siguientes valores de y_{max}

$$y_{max} = \frac{2n\pi D}{kd} = \frac{nD\lambda}{d} \quad \text{con } n = 0,1,2 \dots$$

• El problema es simétrico, respecto al eje x por lo que incluimos los y_{max} negativos

$$y_{max} = \pm \frac{nD\lambda}{d} \quad \text{con } n = 0,1,2 \dots$$

Interferencia destructiva

• Como vimos antes, la **interferencia destructiva** entre dos ondas ocurre cuando la diferencia de fase es:

$$\delta_{min} = kd \,\theta_{min} = kd \frac{y_{min}}{D} = \frac{k\lambda}{2} + 2n\pi \quad \text{con } n = 0,1,2 \dots$$

• Entonces, reemplazando k tenemos

$$\delta_{min} = kd \, \theta_{min} = kd \frac{y_{min}}{D} = \pi, 3\pi, 5\pi, \dots (2n+1)\pi \, \text{con} \, n = 0,1,2 \dots$$

Interferencia destructiva

• En consecuencia, en la pantalla habrá interferencia destructiva en los siguientes valores de y_{\min}

$$y_{min} = \frac{(2n+1)\pi D}{kd} = \frac{(2n+1)D\lambda}{2d}$$
 con $n = 0,1,2...$

• El problema es simétrico, respecto al eje x por lo que incluimos los y_{min} negativos

$$y_{min} = \pm \frac{(2n+1)D\lambda}{2d} \operatorname{con} n = 0,1,2 \dots$$

Simulaciones PHET sobre ondas e interferencia

https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html

• La energía eléctrica por unidad de tiempo que atraviesa una unidad de superficie venía dada por:

$$c\epsilon_0 \left| \vec{E} \right|^2$$

 Llamamos irradiancia al promedio temporal de este flujo de energía, es una medida del brillo en la pantalla P.

$$I = c\epsilon_0 \left(\left| \vec{E} \right|^2 \right)$$

donde el promedio se toma en un período T $\gg \tau = \frac{2\pi}{m}$

$$\left\langle \left| \vec{E} \right|^2 \right\rangle = \frac{1}{T} \int_t^{T+t} \left| \vec{E} \right|^2 dt$$

• Veamos la expresión de I cuando \vec{E} es la suma de dos ondas de igual longitud de onda y por lo tanto de igual frecuencia:

$$\vec{E} = \vec{E}_1 + \vec{E}_2$$

donde

$$\vec{\mathbf{E}}_{1}(\vec{r},t) = \vec{\mathbf{E}}_{01} \cos{(\vec{\mathbf{k}}_{1} \cdot \vec{\mathbf{r}} - \omega t + \varepsilon_{1})}$$

$$\vec{\mathbf{E}}_{2}(\vec{r},t) = \vec{\mathbf{E}}_{02} \cos{(\vec{\mathbf{k}}_{2} \cdot \vec{\mathbf{r}} - \omega t + \varepsilon_{2})}$$

Tenemos entonces

$$\vec{\mathbf{E}}^2 = \vec{\mathbf{E}} \cdot \vec{\mathbf{E}}$$

$$\vec{\mathbf{E}}^2 = (\vec{\mathbf{E}}_1 + \vec{\mathbf{E}}_2) \cdot (\vec{\mathbf{E}}_1 + \vec{\mathbf{E}}_2)$$

$$\vec{\mathbf{E}}^2 = \vec{\mathbf{E}}_1^2 + \vec{\mathbf{E}}_2^2 + 2\vec{\mathbf{E}}_1 \cdot \vec{\mathbf{E}}_2$$

 Olvidándonos de las constantes multiplicativas vemos que si llamamos

$$I_1 = \left\langle \left| \overrightarrow{E_1} \right|^2 \right\rangle \quad \text{e} \quad I_2 = \left\langle \left| \overrightarrow{E_2} \right|^2 \right\rangle \quad \text{e} \quad I_{12} = 2 \left\langle \overrightarrow{E_1} \cdot \overrightarrow{E_2} \right\rangle$$

Entonces

$$I = \left\langle \left| \vec{E} \right|^2 \right\rangle = I_1 + I_2 + I_{12}$$

• El tercer término es el término de interferencia.

Para calcular el término de interferencia primero debemos escribir

$$\vec{\mathbf{E}}_{1} \cdot \vec{\mathbf{E}}_{2} = \vec{\mathbf{E}}_{01} \cdot \vec{\mathbf{E}}_{02} \cos (\vec{\mathbf{k}}_{1} \cdot \vec{\mathbf{r}} - \omega t + \varepsilon_{1})$$

$$\times \cos (\vec{\mathbf{k}}_{2} \cdot \vec{\mathbf{r}} - \omega t + \varepsilon_{2})$$

Luego separamos la parte temporal de los cos(..)

$$\vec{\mathbf{E}}_{1} \cdot \vec{\mathbf{E}}_{2} =$$

$$\vec{\mathbf{E}}_{01} \cdot \vec{\mathbf{E}}_{02} \left[\cos \left(\vec{\mathbf{k}}_{1} \cdot \vec{\mathbf{r}} + \varepsilon_{1} \right) \cos \omega t + \sin \left(\vec{\mathbf{k}}_{1} \cdot \vec{\mathbf{r}} + \varepsilon_{1} \right) \sin \omega t \right]$$

$$\times \left[\cos \left(\vec{\mathbf{k}}_{2} \cdot \vec{\mathbf{r}} + \varepsilon_{2} \right) \cos \omega t + \sin \left(\vec{\mathbf{k}}_{2} \cdot \vec{\mathbf{r}} + \varepsilon_{2} \right) \sin \omega t \right]$$

• Al aplicar propiedad distributiva y promediar en el tiempo, sólo sobreviven los términos que tienen $(\cos(\omega t))^2$ y $(\sin(\omega t))^2$ cuyo promedio es ½, con lo cual:

$$\langle \vec{\mathbf{E}}_1 \cdot \vec{\mathbf{E}}_2 \rangle_{\mathbf{T}} = \frac{1}{2} \vec{\mathbf{E}}_{01} \cdot \vec{\mathbf{E}}_{02} \cos (\vec{\mathbf{k}}_1 \cdot \vec{\mathbf{r}} + \varepsilon_1 - \vec{\mathbf{k}}_2 \cdot \vec{\mathbf{r}} - \varepsilon_2)$$

Donde

$$(\vec{\mathbf{k}}_1 \cdot \vec{\mathbf{r}} - \vec{\mathbf{k}}_2 \cdot \vec{\mathbf{r}} + \varepsilon_1 - \varepsilon_2),$$

ullet Es la diferencia de fase que llamamos δ

• Si agregamos la simplificación

$$\overrightarrow{E_{01}} = \overrightarrow{E_{02}} = \overrightarrow{E_0}$$

Tenemos

$$I_1 = I_2 = I_0 = \frac{E_0^2}{2}$$

У

$$I_{12} = \frac{1}{2} E_0^2 \cos \delta$$

• Entonces

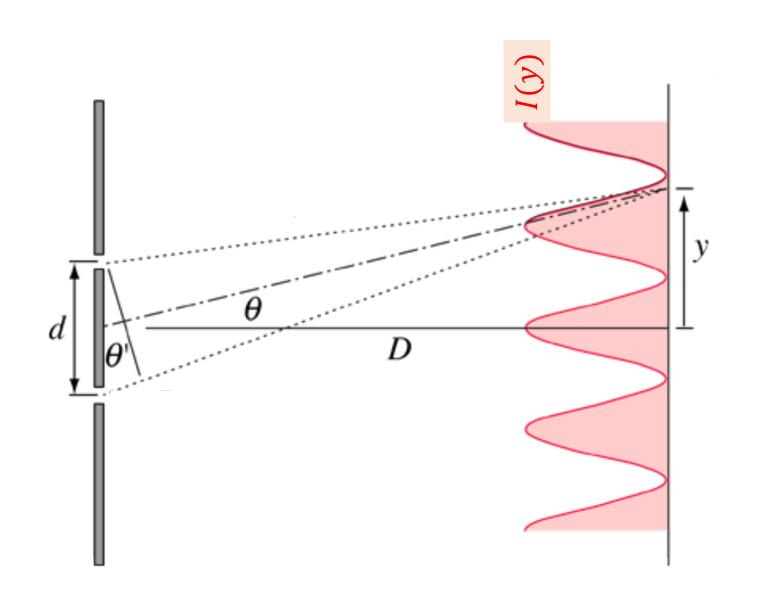
$$I = 2I_0(1 + \cos \delta) = 4I_0 \cos^2 \frac{\delta}{2}$$

- En Young, no hay diferencia de fase inicial entre las ondas y $\vec{k}=\vec{k}_1=\vec{k}_2$ por lo que la diferencia de fase ocurre por la diferencia de distancia r_1-r_2
- Entonces para $\delta_{max}=0,\pm 2\pi,\pm 4\pi...$

$$I_{max} = 4I_0$$

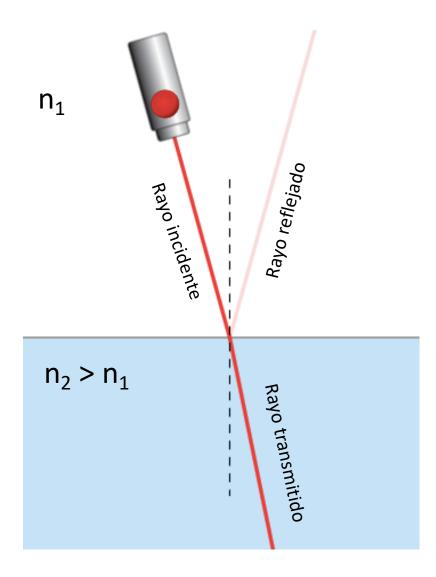
• Mientras que para $\delta_{min}=\pm\pi,\pm3\pi...$

$$I_{min} = 0$$

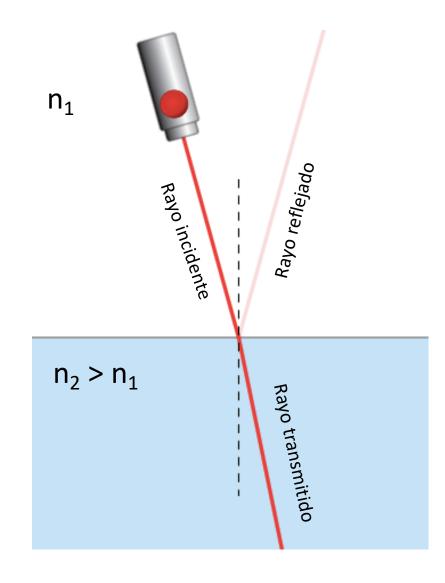


Interferencia por reflexión/refracción

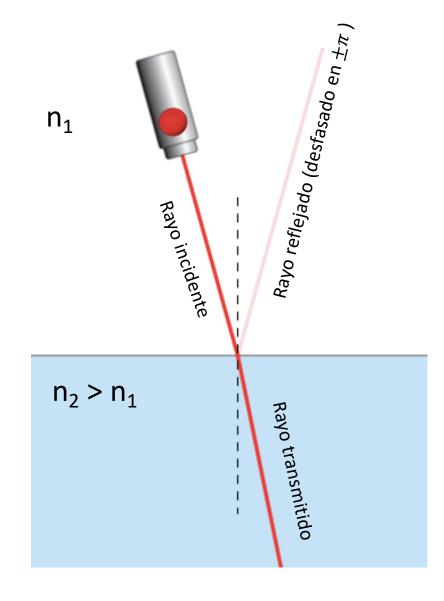
 La experiencia muestra que en toda interfase entre dos medios n₁ y n₂, una onda electromagnética incidente da lugar a una onda transmitida y otra reflejada.



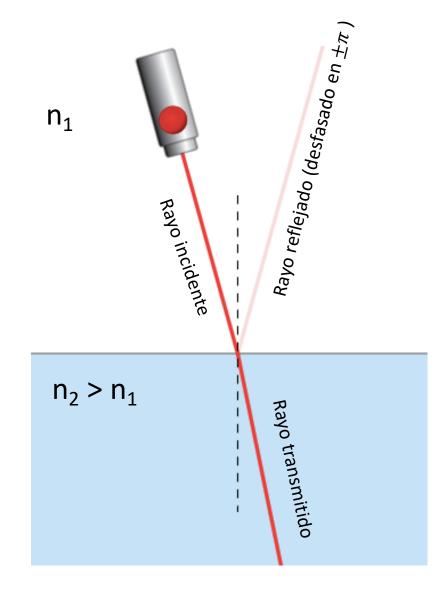
- La experiencia muestra que en toda interfase entre dos medios n₁ y n₂, una onda electromagnética incidente da lugar a una onda transmitida y otra reflejada.
- De la misma manera que en la cuerda con extremo fijo, el campo eléctrico de la onda reflejada se invierte respecto al campo de la incidente si n₂ > n₁.



- La experiencia muestra que en toda interfase entre dos medios n₁ y n₂, una onda electromagnética incidente da lugar a una onda transmitida y otra reflejada.
- De la misma manera que en la cuerda con extremo fijo, el campo eléctrico de la onda reflejada se invierte respecto al campo de la incidente si n₂ > n₁.
- Esto significa un cambio de fase de $\pm \pi$ en la fase de la onda reflejada respecto a la incidente.

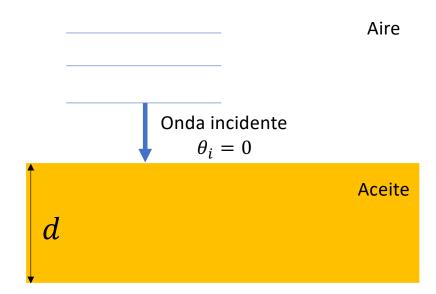


- La experiencia muestra que en toda interfase entre dos medios n₁ y n₂, una onda electromagnética incidente da lugar a una onda transmitida y otra reflejada.
- De la misma manera que en la cuerda con extremo fijo, el campo eléctrico de la onda reflejada se invierte respecto al campo de la incidente si n₂ > n₁.
- Esto significa un cambio de fase de $\pm\pi$ en la fase de la onda reflejada respecto a la incidente.
- La onda transmitida no presenta desfasaje ni tampoco hay desfasaje en la reflejada cuando n₂ < n_{1.}



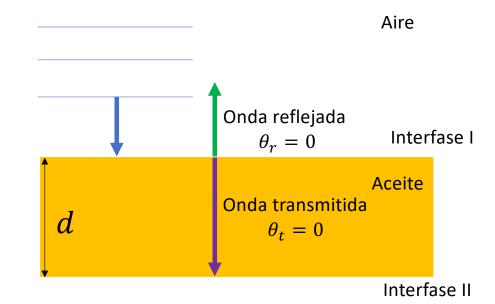
Interferencia de láminas delgadas

- Imaginemos una lámina fina de aceite (n = 1,45) rodeada de aire.
- La lámina es delgada (la onda no debe perder coherencia) de espesor d.
- Una onda plana, coherente, de longitud de onda λ incide **normalmente** desde el aire.



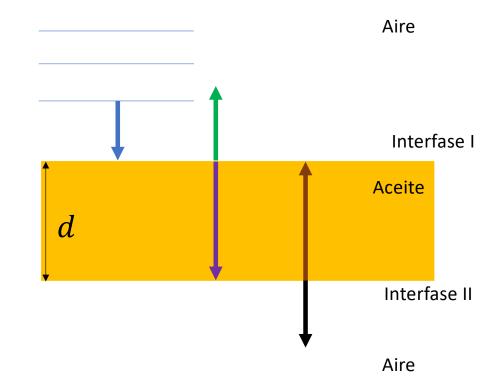
Aire

 Producto de la reflexión y la refracción, el rayo incidente en la interfase I se separa en dos partes: Una minoritaria que se refleja (verde) y otra mayoritaria que entra en el aceite (violeta).

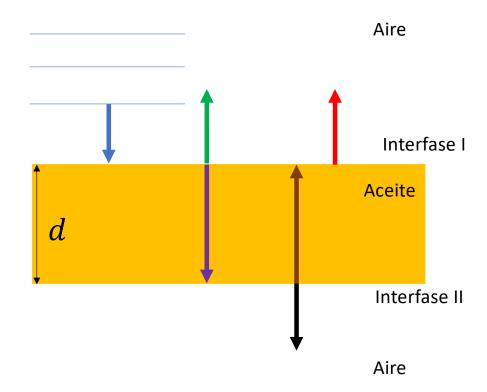


Aire

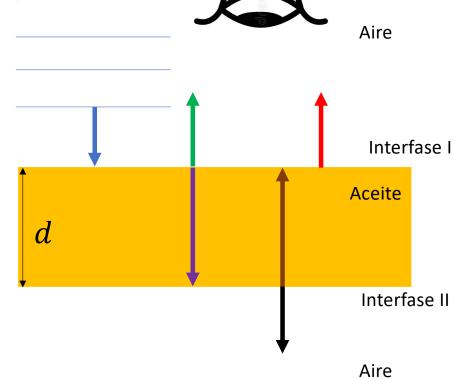
- Producto de la reflexión y la refracción, el rayo incidente en la interfase I se separa en dos partes: Una minoritaria que se refleja (verde) y otra mayoritaria que entra en el aceite (violeta).
- El rayo violeta incide normalmente en la interfase II y da lugar a un rayo reflejado (marrón) y otro (negro) que pasa del otro lado



• El rayo marrón, reflejado en la interfase II se refracta volviendo a la capa superior de aire (color rojo).

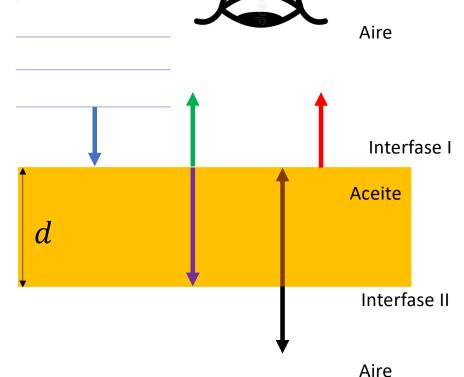


- El rayo marrón, reflejado en la interfase II se refracta volviendo a la capa superior de aire (color rojo).
- Una persona que ve desde arriba (por reflexión) va a ver una interferencia entre los rayos verde y rojo.



- El rayo marrón, reflejado en la interfase II se refracta volviendo a la capa superior de aire (color rojo).
- Una persona que ve desde arriba (por reflexión) va a ver una interferencia entre los rayos verde y rojo.

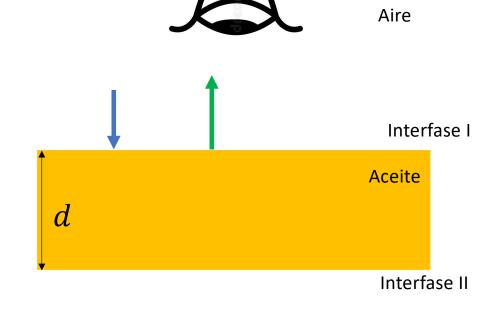
• ¿Cómo será la interferencia entre estos dos rayos?



 Veamos la diferencia de fase entre ambos cuando emergen del aceite

• Por **reflejarse** en una interfase desde un n mayor (aceite) de vuelta a un n menor (aire) el rayo verde se desfasa π respecto al incidente.

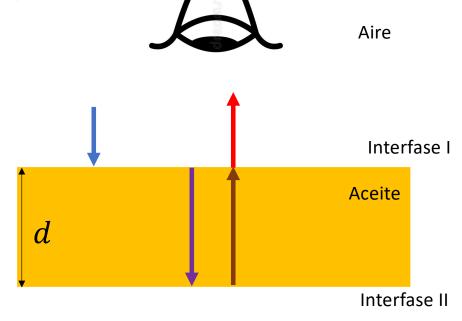
 El rayo verde no acumula diferencia de fase adicional pues no viaja dentro del aceite.



Aire

Diferencia de fase total del rayo verde: π

- El rayo rojo tiene origen en la refracción del rayo azul en la interfase I, la reflexión en la interfase II y por último la refracción en la interfase I.
- En la reflexión en la interfase II no suma diferencia de fase como el rayo verde pues lo hace desde un n menor (aire) de vuelta a un n menor (aceite).
- Por viajar una distancia igual a 2d dentro del aceite, la diferencia de fase respecto al rayo azul es: $k_{ac}2d$



Diferencia de fase total del rayo rojo:
$$2k_{ac}d=\frac{4\pi d}{\lambda_{ac}}$$

 Recordemos que la cantidad crucial en la interferencia de dos ondas es la diferencia de sus fases

δ

- $= (fase \ acumulada \ por \ rayo \ verde \ -fase \ acumulada \ por \ rayo \ rojo)$
- Fase acumulada por rayo verde

O por camino recorrido ; π por reflexión

Fase acumulada por el rayo rojo

 $\frac{4\pi d}{\lambda_{ac}}$ por camino recorrido + 0 de reflexiones

• La diferencia de fase entre los rayos verde y rojo es entonces

$$\delta = \pi - \frac{4\pi d}{\lambda_{ac}} = \pi - \frac{4\pi d n_{ac}}{\lambda_{vacio}}$$

• Para que haya interferencia constructiva:

$$\delta = \delta_{max} = 0, \pm 2\pi, \pm 4\pi, \pm 6\pi \dots$$

Para que haya interferencia destructiva:

$$\delta = \delta_{min} = \pm \pi, \pm 3\pi, \pm 5\pi \dots$$

Valores de d para interferencia constructiva

ullet Si fijo λ modificando d vamos a tener aumento en la intensidad en los rayos reflejados si

$$d = d_{max} = -\frac{(\delta_{max} - \pi)\lambda}{4\pi n_{ac}}$$

• Recordar que d_{max} debe ser positivo. Probemos valores de δ_{max} .

δ_{max}	d_{max}
2π , 4π , 6π	Negativo (no sirve)
0	$rac{\lambda}{4n_{ac}}$
-2π	$rac{3\lambda}{4n_{ac}}$
-4π	$rac{5\lambda}{4n_{ac}}$

Valores de d para interferencia constructiva

• El valor más pequeño de d_{max} para tener interferencia constructiva es $\frac{\lambda}{4n_{ac}}$

• Supongamos $\lambda = 550 \ nm$ (amarillo verdoso) entonces, el espesor mínimo vale:

$$\frac{\lambda}{4n_{ac}} = 94.8 \ nm$$

Otros espesores válidos serán

$$3 \times 94,8 \ nm, 5 \times 94,8 \ nm, 7 \times 9,8 \ nm$$
 etc

Valores de d para interferencia destructiva

ullet Si fijamos λ modificando d vamos a poder tener disminución en la intensidad en los rayos reflejados si

$$d = d_{min} = -\frac{(\delta_{min} - \pi)\lambda}{4\pi n_{ac}}$$

• Nuevamente, d_{min} debe ser positivo. Probemos valores de δ_{min} .

δ_{min}	d_{min}
3π , 5π	Negativo (no sirve)
π	0 (lámina hiperdelgada)
$-\pi$	$rac{\lambda}{2n_{ac}}$
-3π	$rac{\lambda}{n_{ac}}$

Valores de d para interferencia destructiva

ullet El valor más pequeño de d_{min} para tener interferencia destructiva es

Valores de d para interferencia destructiva

• El valor más pequeño de d_{min} para tener interferencia destructiva es

0

- Esto vale para todo λ
- Otros espesores válidos serán dependientes de λ . Para $\lambda = 400 \ nm$ (azul) $137.9 \ nm, 2 \times 137.9 \ nm, 3 \times 137.9.7 \ nm$ etc