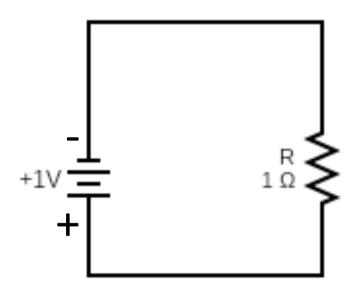
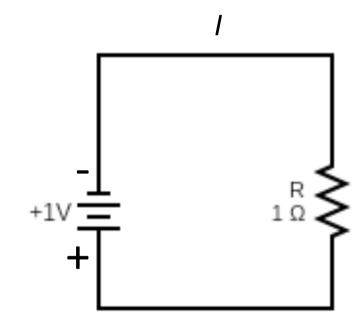
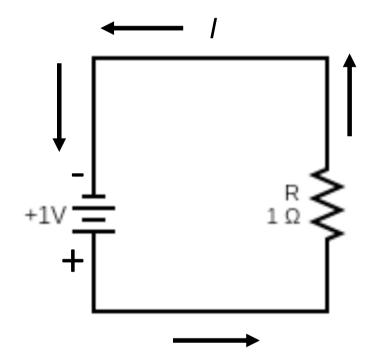
• Tenemos como datos la FEM de la batería (1V) y el valor de la resistencia (1 Ω).



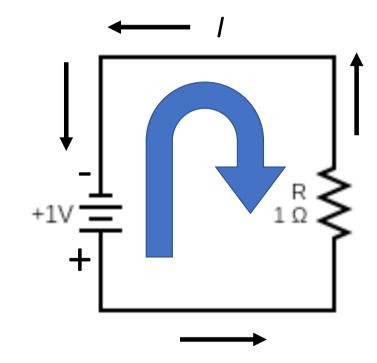
- Tenemos como datos la FEM de la batería (1V) y el valor de la resistencia (1 Ω).
- No hay nodos. Por lo tanto existe una sola corriente / que circula por la rama. No sabemos cuál es su intensidad ni cual es su sentido.



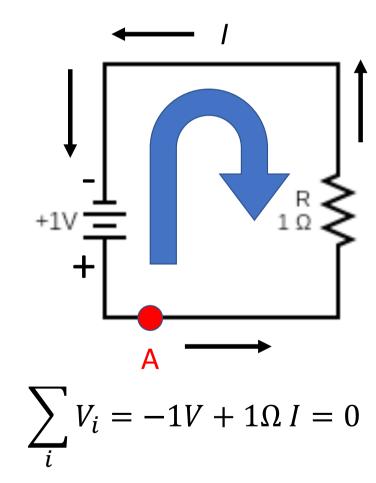
- Tenemos como datos la FEM de la batería (1V) y el valor de la resistencia (1 Ω).
- No hay nodos. Por lo tanto existe una sola corriente / que circula por la rama. No sabemos cuál es su intensidad ni cual es su sentido.
- Elijamos un sentido 'a priori' para I.



- Tenemos como datos la FEM de la batería (1V) y el valor de la resistencia (1 Ω).
- No hay nodos. Por lo tanto existe una sola corriente / que circula por la rama. No sabemos cuál es su intensidad ni cual es su sentido.
- Elijamos un sentido 'a priori' para I.
- Apliquemos la Ley de Kirchhoff eligiendo un recorrido, por ejemplo, el indicado por la flecha azul.



- Comenzando desde cualquier punto, por ejemplo el A.
- El primer salto de voltaje es la batería. Anotamos una caida de 1 V por pasar del borne + al -.
- Luego encontramos la resistencia. Al recorrerla en contra de la corriente suma un valor $1\Omega I > 0$.
- Luego de la resistencia no hay más variaciones.

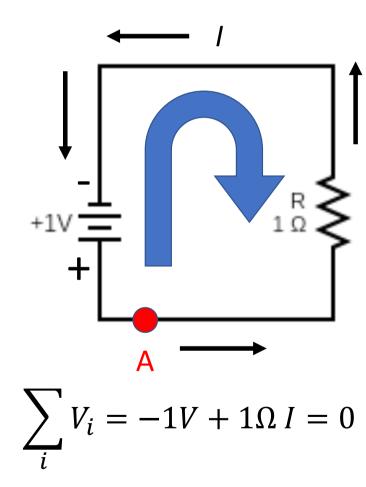


• Sólo resta despejar *l*:

$$1\Omega I = 1V$$

$$I = 1A$$

• El valor de *I* no es negativo. De ahí que la elección de la dirección de la corriente fue acertada.



Magnetismo

El magnetismo en la vida cotidiana

Motores

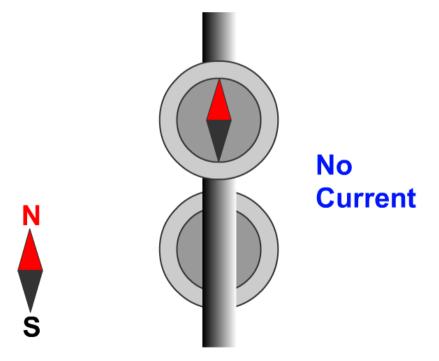
Orientación de animales

Orientación y guiado

Orientación de satélites

El campo magnético

• Hans Christian Oersted (1819) demuestra que una corriente estacionaria puede generar un campo magnético.

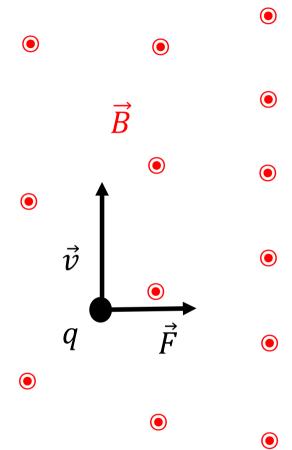


Hans Christian Oersted

Fuerza de Lorentz

- Hendrik Lorentz formalizó en 1895 la expresión para la fuerza magnética a partir de un campo magnético \overrightarrow{B}
- Una carga q con una velocidad \vec{v} que pasa por una región con campo magnético \vec{B} experimentará una fuerza igual a:

$$\vec{F} = q\vec{v} \times \vec{B}$$

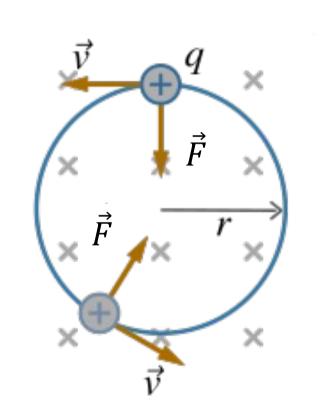


- Supongamos \vec{B} uniforme y una carga q>0 de masa m que viaja inicialmente con una velocidad \vec{v} perpendicular a \vec{B} .
- La ecuación de movimiento resulta:

$$\vec{F} = m\vec{a}$$

$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B}$$

- Es decir que la fuerza \vec{F} es perpendicular a \vec{v} y por lo tanto produce una curvatura en la trayectoria de la partícula pero no cambia $|\vec{v}|$ ni su energía cinética.
- Tenemos un movimiento circular uniforme.



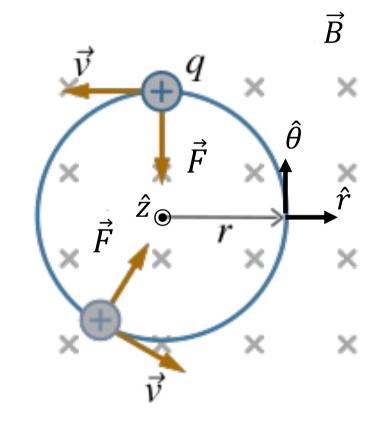
- Usemos coordenadas cilíndricas con el eje \hat{z} apuntando hacia afuera de la pantalla.
- En coordenadas cilíndricas tenemos:

$$\vec{B} = -B\hat{z}$$

$$\vec{v} = v\hat{\theta}$$

$$\vec{F} = q\vec{v} \times \vec{B} = -qvB[\hat{\theta} \times \hat{z}] = -qvB\hat{r}$$

• Como no hay fuerza en \hat{z} , es de esperar que la partícula se moverá en el plano xy.



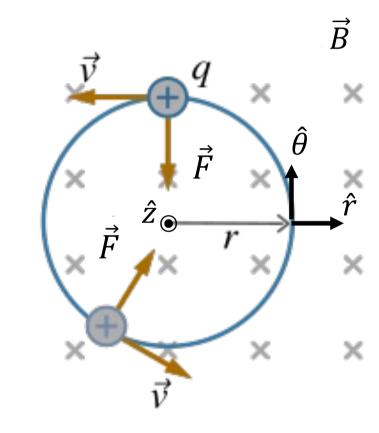
• Si la posición de la partícula en polares cargada es $\vec{r}=r\hat{r}$, la \vec{a} vale:

$$\vec{a} = \frac{d}{dt} \left(\frac{d\vec{r}}{dt} \right) = a_r \hat{r} + a_\theta \hat{\theta}$$

Donde

$$a_{\theta} = 2\frac{dr}{dt}\frac{d\theta}{dt} + r\frac{d^{2}\theta}{dt^{2}}$$

$$a_r = \frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2$$



• Entonces tenemos

$$2\frac{dr}{dt}\frac{d\theta}{dt} + r\frac{d^2\theta}{dt^2} = 0$$

Como r no varía tenemos:

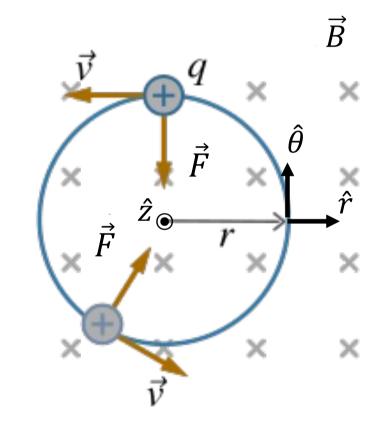
$$\frac{d^2\theta}{dt^2} = 0 \Longrightarrow \frac{d\theta}{dt} = constante$$

• Por otro lado tenemos:

$$\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2 = -\frac{qvB}{m}$$

Como r no varía tenemos:

$$-r\left(\frac{d\theta}{dt}\right)^2 = -\frac{qvB}{m}$$



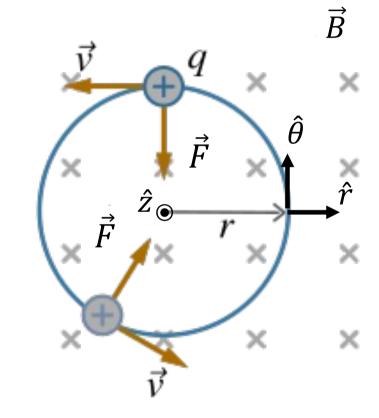
• Entonces tenemos

$$r\left(\frac{d\theta}{dt}\right)^2 = \frac{qvB}{m}$$

• Sea $\omega = \frac{d\theta}{dt}$. Como además $v = r\omega$, tenemos

$$r\omega^2 = \frac{qr\omega B}{m}$$

$$\omega = \frac{qB}{m}$$
 Frecuencia ciclotrón



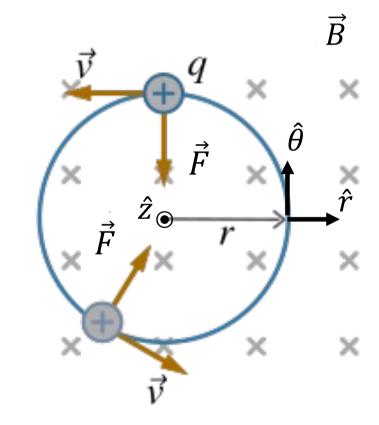
• Por otro lado, si v es dato

$$r\omega^2 = \frac{v^2}{r} = \frac{qvB}{m}$$

• Entonces tenemos:

$$\frac{1}{r} = \frac{qB}{mv}$$

$$r = \frac{mv}{aB}$$
 Radio ciclotrón

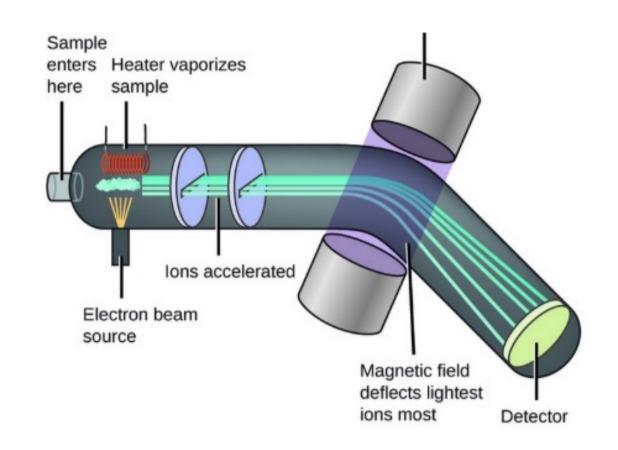


×

Aplicaciones:

Espectrómetro de masa

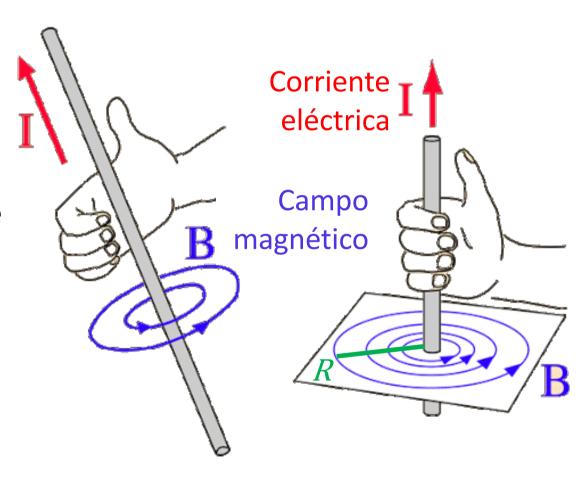
(separa iones de acuerdo a su masa)



Campo magnético de un hilo recto de corriente

- Experimentalmente, se sabe que el campo magnético de un hilo recto de corriente I genera un campo en el sentido de las líneas azules.
- También **experimentalmente** se obtiene que *B* es proporcional a la corriente *I* e inversamente proporcional a la distancia al hilo *R*.

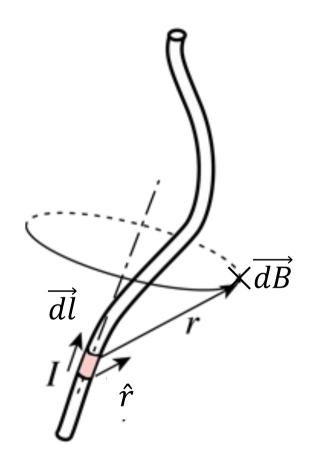
$$B \propto \frac{I}{R}$$



Ley de Biot-Savart

- Biot y Savart plantearon un formalismo para obtener el campo a partir de contribuciones de elementos de corriente \overrightarrow{Idl} .
- El diferencial de campo magnético \overrightarrow{dB} a partir de un elemento de corriente \overrightarrow{Idl} en el punto $\overrightarrow{r}=r\widehat{r}$ se puede escribir como:

$$\overrightarrow{dB} = \frac{C}{r^2} I \overrightarrow{dl} \times \hat{r}$$



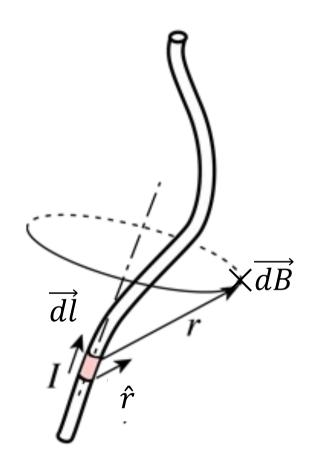
Ley de Biot-Savart

• Mediante experimentos se comprueba que en el sistema SI.

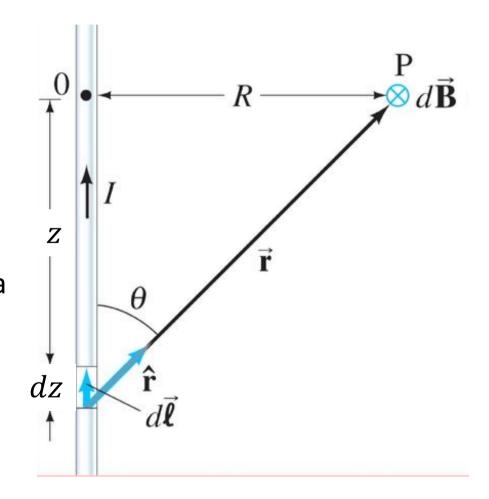
$$C = 10^{-7} \frac{N}{A^2}$$

- Entonces, por similitud con la electrostática se define la permeabilidad magnética del vacío μ_0 tal que: $C=\frac{\mu_0}{4\pi}$
- Entonces

$$\mu_0 = 4\pi \ 10^{-7} \frac{N}{A^2} = 1,25 \ 10^{-6} \frac{N}{A^2}$$



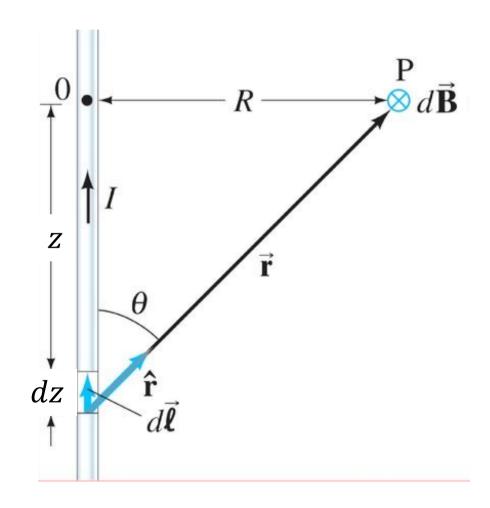
- Consideremos una corriente I a lo largo de un hilo paralelo al eje z.
- El elemento de corriente es $I \overrightarrow{dl} = I dz \hat{z}$
- Desde el elemento de <u>corriente</u>, el punto P donde evalúo \overrightarrow{dB} se indica con el vector $\overrightarrow{r}=r\widehat{r}$ que forma un ángulo θ con el eje z.
- R es la distancia desde el eje a P.



• Por la ley de la mano derecha \overrightarrow{dB} se dirige hacia adentro de la pantalla ($\widehat{\phi}$ en coordenadas cilíndricas). Integrando a lo largo del hilo tengo \overrightarrow{B} .

$$\vec{B} = \frac{\mu_0}{4\pi} \int_{-\infty}^{\infty} \frac{Idz \sin \theta}{r^2} \, \hat{\phi}$$

• Donde $r^2 = \frac{R^2}{(\sin \theta)^2} \, y - z = \frac{R}{\tan \theta}$



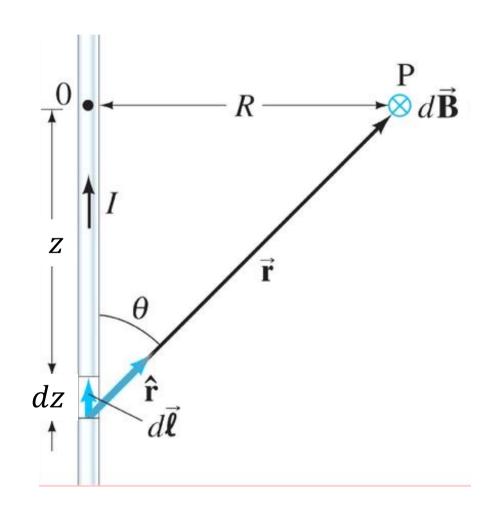
• Lo anterior indica que
$$dz = \frac{R}{(\sin \theta)^2} d\theta$$

• Poniendo todo en función de R y θ

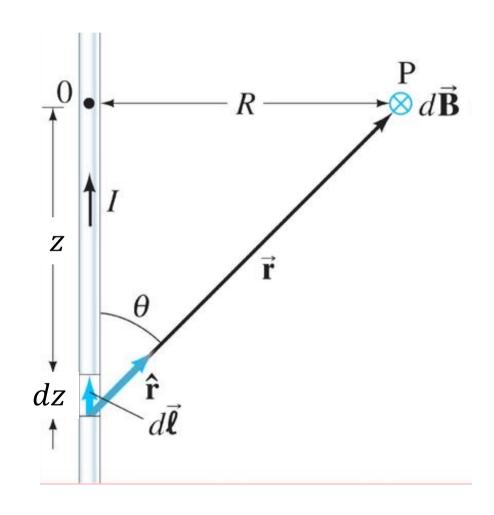
$$\vec{B} = \frac{\mu_0 I}{4\pi} \int_0^{\pi} \frac{\sin\theta \ d\theta}{R} \, \hat{\phi}$$

• Entonces

$$\vec{B} = \frac{\mu_0 I}{2\pi R} \hat{\phi}$$



- Entonces si tenemos
 - R = 10 cm
 - I = 100 A
- B \sim 2 10⁻⁴ T = 2 Gauss
- 1 Gauss = 10^{-4} T
- 1 nanoTesla = 10⁵ Gauss



El campo magnético terrestre

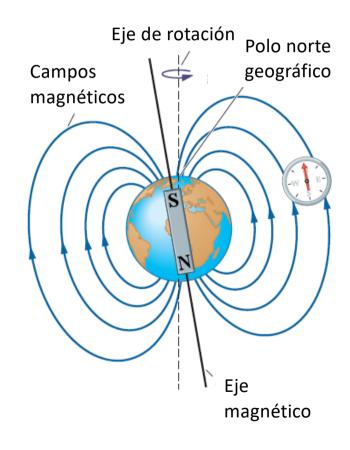
MODELO IGRF 12

CABA

Lat. 34.6 °S, Long. 58.44 ° W, nivel del mar

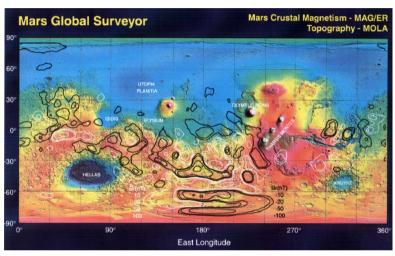
Componente horizontal 17,1 μ T Componente vertical hacia arriba 14,9 μ T, Intensidad total de 22,6 μ T.

 $1\mu T = 10^{-2} \text{ Gauss}$



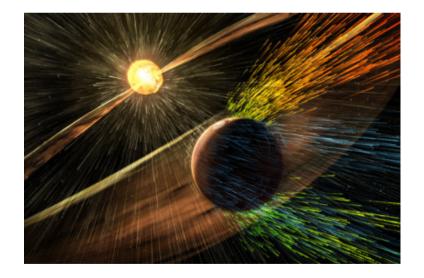
La magnetósfera terrestre

Marte

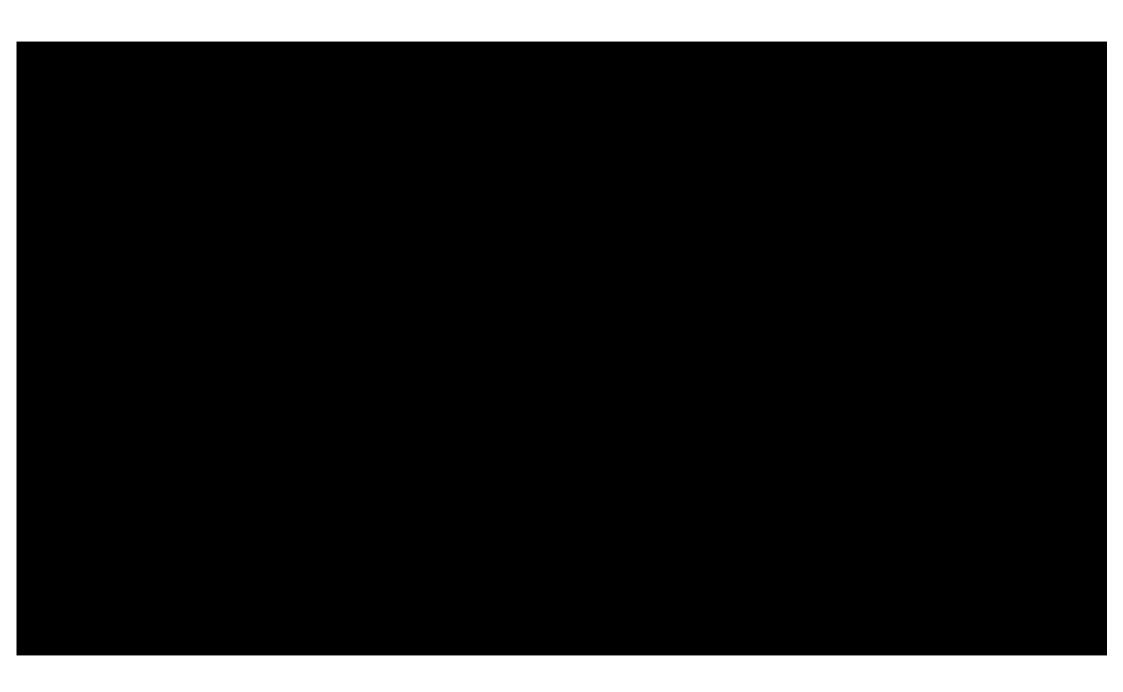


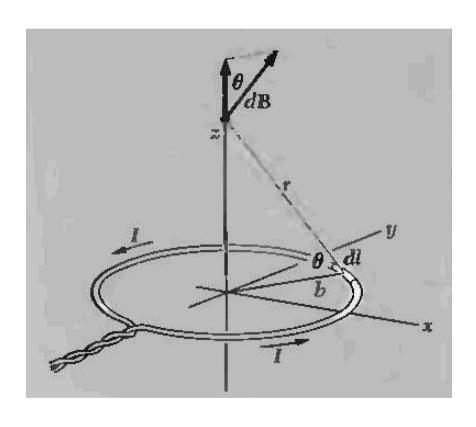
Marte carece de campo magnético global desde hace 4,5 mil millones de años

Evidencia de agua líquida



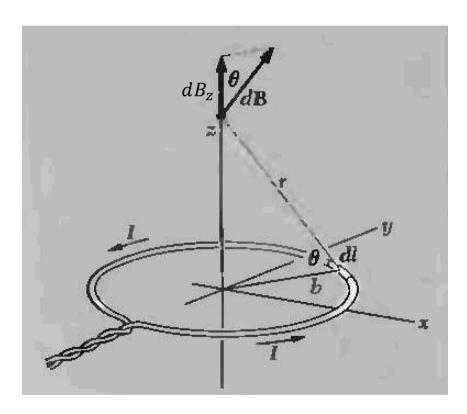
El agua escapa por acción del 'viento solar'





- Espira plana circular de radio b por la que circula una corriente *I*.
- Vamos a calcular el campo en el eje de simetría z.
- Podemos esperar que el campo en el eje z será a lo largo del eje z.

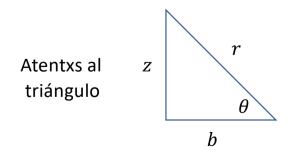
$$\vec{B}(0,0,z) = B(z)\hat{z}$$

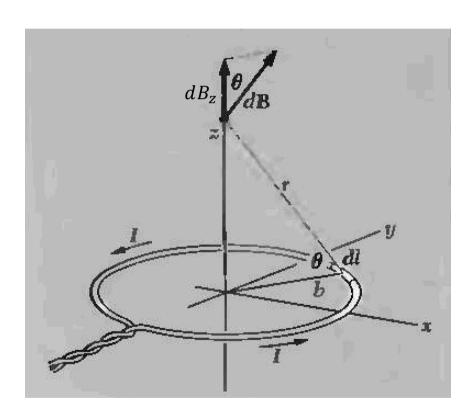


 Usando Biot-Savart calculemos el diferencial de la componente z del campo:

$$dB_z = dB \cos \theta = \frac{\mu_0}{4\pi} \frac{I \, dl}{r^2} \cos \theta$$

• Donde r es la distancia del elemento de corriente al punto de evaluación y θ es el ángulo entre r y el radio de la espira b.





• Simplificando:

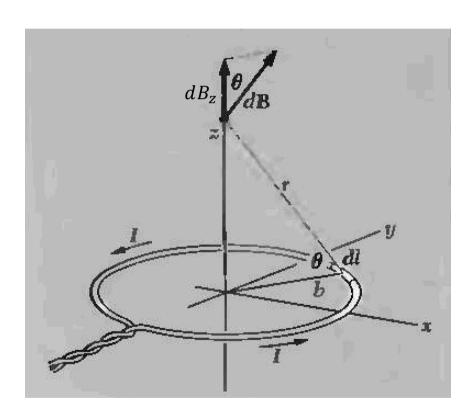
$$B_z = \frac{\mu_0}{2} \frac{I b^2}{r^3}$$

• Donde r es función de z :

$$r = \sqrt{b^2 + z^2}$$

• Entonces en el eje z:

$$\vec{B}(0,0,z) = B_z \hat{z} = \frac{\mu_0}{2} \frac{I b^2}{\left[\sqrt{b^2 + z^2}\right]^3} \hat{z}$$



• Simplificando:

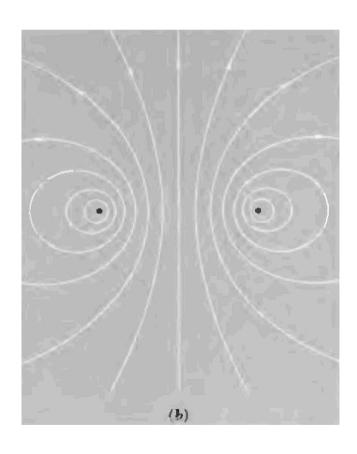
$$B_z = \frac{\mu_0}{2} \frac{I b^2}{r^3}$$

• Donde r es función de z :

$$r = \sqrt{b^2 + z^2}$$

• Entonces en el eje z:

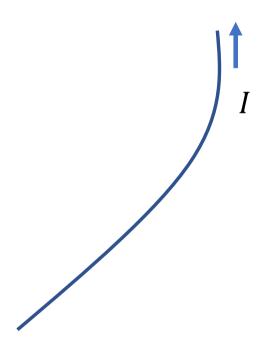
$$\vec{B}(0,0,z) = B_z \hat{z} = \frac{\mu_0}{2} \frac{I b^2}{\left[\sqrt{b^2 + z^2}\right]^3} \hat{z}$$



Campo magnético de una espira circular en el plano que contiene al eje de simetría ¿Hay una manera más fácil de calcular el campo magnético para distribuciones de corriente simétricas?

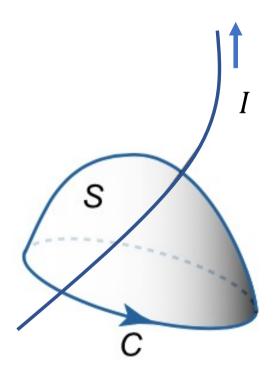
Ley de Ampère

• Supongamos una corriente *I* .



Ley de Ampère

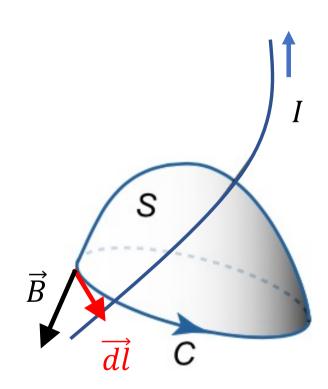
- Supongamos una corriente *I*.
- Tomemos una curva cerrada C que la encierra.



Ley de Ampère

- Supongamos una corriente *I*.
- Tomemos una curva cerrada C que la encierra.
- Entonces, la integral de línea del campo magnético generado por I a lo largo de C es proporcional a la corriente que queda encerrada por C.

$$\oint_{\mathbf{C}} \vec{B} \cdot \vec{dl} = \mu_0 I$$



Ley de Ampère

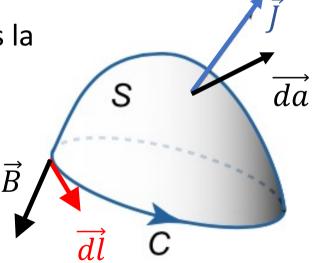
• La corriente encerrada I puede ser vista como el flujo de densidad de corriente \vec{J} a través de cualquier superficie S cuyo borde es C.

• Entonces reemplazando I por $\iint \overrightarrow{J} \cdot \overrightarrow{da}$ tenemos la Ley de Ampère.

$$\oint \vec{B} \cdot \vec{dl} = \mu_0 \iint \vec{J} \cdot \vec{da}$$
C
S

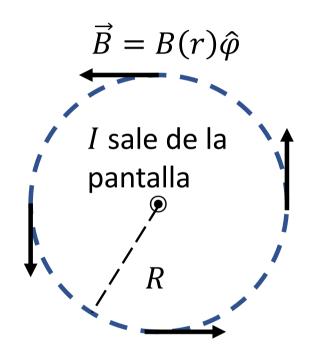
Importante!

El sentido de recorrido del camino C y el sentido de *I* se relacionan por la regla de la mano derecha



Aplicaciones de la ley de Ampère: hilo de corriente $\it I$

- Problema con simetría de traslación a lo largo del hilo
- El campo \vec{B} es tangente a los círculos concéntricos centrados en el hilo.
- El módulo de \vec{B} depende sólo de la distancia r.



Aplicaciones de la ley de Ampère: hilo de corriente I

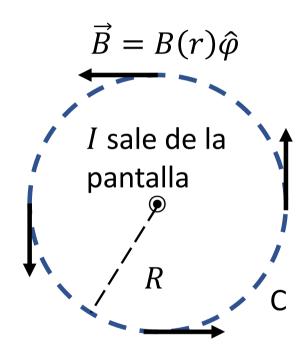
- Tomemos C como la circunferencia de radio R recorrida en sentido antihorario con la corriente hacia afuera de la pantalla.
- Tomando $\overrightarrow{dl} = Rd\varphi\widehat{\varphi}$ la integral queda

$$\oint \vec{B} \cdot \vec{dl} = \oint B(R)\hat{\varphi} \cdot Rd\varphi \hat{\varphi} = \mu_0 I$$

$$C$$

$$B(R)R \int_0^{2\pi} d\varphi = 2\pi B(R)R = \mu_0 I$$

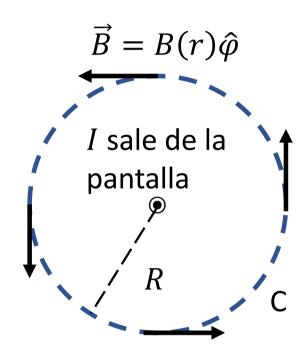
$$B(R) = \frac{\mu_0 I}{2\pi R}$$



Aplicaciones de la ley de Ampère: hilo de corriente l

- Entonces, el resultado para un radio R es válido para todo r tal que encierre I
- Por lo tanto, para todo el espacio

$$\vec{B} = B(r)\hat{\varphi} = \frac{\mu_0 I}{2\pi r} \hat{\varphi}$$



El flujo de \overrightarrow{B} y otra ecuación de Maxwell

- Normalmente la ley de Ampère no alcanza por sí sola para obtener \vec{B} a partir de \vec{J} .
- Por eso se necesita otra ecuación. Una relativa al flujo de \overrightarrow{B} .
- Es posible demostrar (no lo haremos aquí) que para todo \vec{B} y toda superficie cerrada S:

$$\iint_{S} \vec{B} \cdot \vec{da} = 0$$

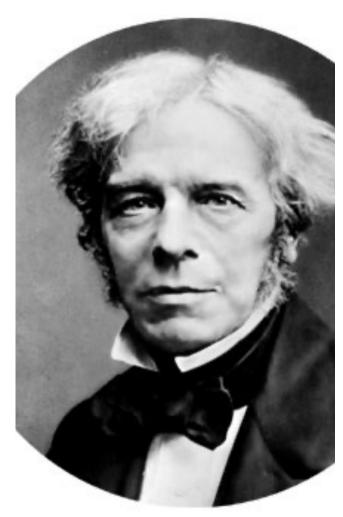
• Esto quiere decir que no hay manantiales ni sumideros de campo magnético (no hay monopolos magnéticos) sea cual fuere la distribución de corrientes representada por \vec{j} .

Inducción electromagnética

Conexión entre electricidad y magnetismo

- ✓ Oersted (1819) demuestra que una corriente estacionaria puede generar un campo magnético.
- x Faraday sugiere que un campo magnético estacionario podría generar una corriente, pero sus experimentos no tuvieron éxito.

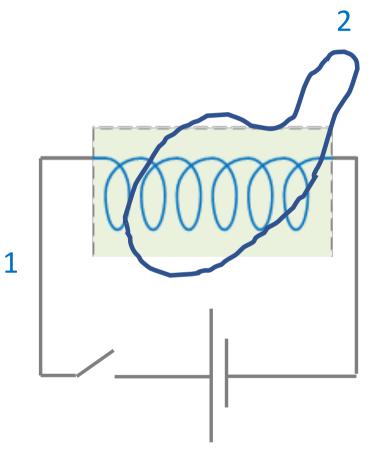
Hans Christian Oersted



Michael Faraday

Experimento de Faraday

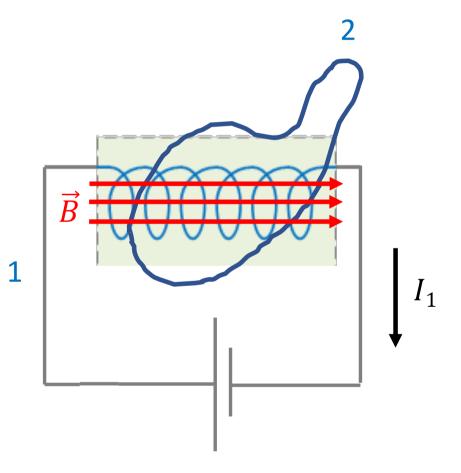
- Conectó una fuente a un solenoide.
- Consideró 2 espiras
- 1. El circuito
- 2. Una espira que envuelva al solenoide



No hay corriente en ninguno

Experimento de Faraday

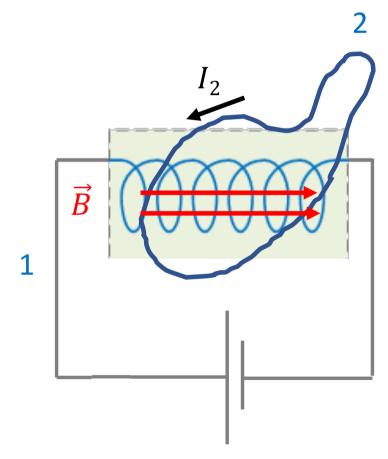
- Conectó una fuente a un solenoide.
- Consideró 2 espiras
- 1. El circuito
- 2. Una espira que envuelva al solenoide



Hay corriente en 1

Experimento de Faraday

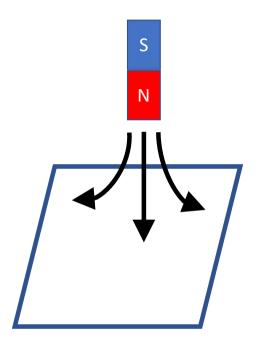
- Pero justo al cerrar el switch o al abrirlo una corriente transitoria circulaba en 2.
- En otras palabras cuando el campo magnético cambiaba (crecia o decrecía), había corriente en 2
- Faraday concluyó que la variación de \overrightarrow{B} crea un campo eléctrico.



Recién cerrado el switch

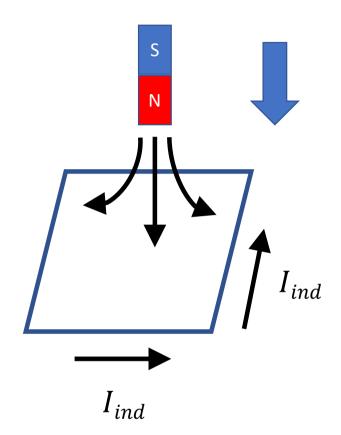
Ley de Lenz

- Otro hecho experimental:
- La corriente inducida fluye en el sentido opuesto al sentido de variación del flujo magnético.



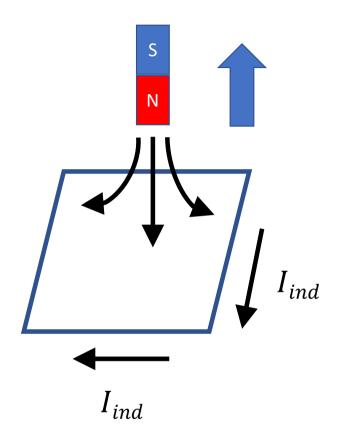
Ley de Lenz

- Otro hecho experimental:
- La corriente inducida fluye en el sentido opuesto al sentido de variación del flujo magnético.
- Al crecer el flujo la corriente I_{ind} fluye para oponerse al cambio (crecimiento).



Ley de Lenz

- Otro hecho experimental:
- La corriente inducida fluye en el sentido opuesto al sentido de variación del flujo magnético.
- Al crecer el flujo la corriente I_{ind} fluye para oponerse al cambio (crecimiento).
- Al decrecer el flujo, la corriente I_{ind} fluye al reves.



FEM Inducida

• La I_{ind} se relaciona con una FEM $_{ind}$ a través de la resistencia de la espira en donde se induce la corriente.

$$FEM_{ind} = I_{ind}R$$

• Faraday halló que la FEM_{ind} era proporcional al cambio de \overrightarrow{B} y al área de la espira en la que se induce la corriente.

$$FEM_{ind} \propto \frac{\partial \vec{B}}{\partial t}$$
 $FEM_{ind} \propto Area$

Ley de Faraday

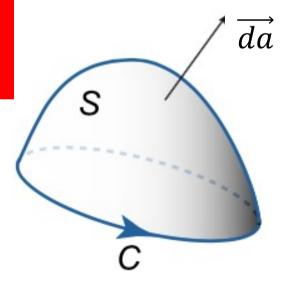
ullet Concluyó que la FEM_{ind} depende de la variación del flujo magnético

$$FEM_{ind} = -\frac{\partial \Phi_B}{\partial t} = -\frac{\partial}{\partial t} \iint \vec{B} \cdot \vec{d}\vec{a}$$
 S

• El menos viene de la Ley de Lenz.

• S es cualquier superficie limitada por la espira.

Ley de Faraday



Ley de Faraday

• Retomemos la Ley de Faraday

$$FEM_{ind} = -\frac{\partial \Phi_B}{\partial t} = -\frac{\partial}{\partial t} \iint \vec{B} \cdot \vec{da}$$

- La integral es sobre una superficie S abierta limitada por el circuito C.
- La corriente inducida I_{ind} se opone la dirección asociada al crecimiento del flujo magnético Φ_B

Circuito C



lacktriangle Dirección de Incremento del flujo magnético Φ_B

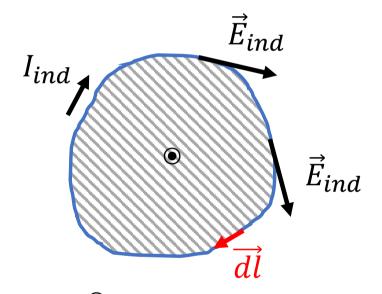
Ley de Faraday

- La corriente I_{ind} es impulsada por un campo eléctrico \vec{E}_{ind} inducido.
- Entonces, la integral de camino cerrado de \vec{E}_{ind} sobre C debe ser igual a la FEM_{ind}
- Entonces

$$FEM_{ind} = \oint \vec{E}_{ind} \cdot \overrightarrow{dl} = -\frac{\partial}{\partial t} \iint \vec{B} \cdot \overrightarrow{da}$$

$$C \qquad \qquad S$$

Circuito C



Dirección de Incremento del flujo magnético Φ_B