Óptica Geométrica

- Se denomina así al estudio de la propagación de la luz en términos de rayos y no tiene en cuenta aspectos electromagnéticos ni ondulatorios de la luz.
- No incluye fenómenos ondulatorios tales como la difracción, la interferencia o la polarización. En la práctica equivale a trabajar con longitudes de onda muy pequeñas.
- Se trata de un método que simplifica mucho el proceso de hallar la marcha de la luz a través de un sistema de interfases entre medios.

Sistemas ópticos

- Una fuente puntual envía ondas esféricas.
- Eso equivale a rayos radiales.
- Un cono de rayos entra al sistema óptico, el cual hace que los rayos converjan a un punto P.
- Los frentes de ondas se invierten
- Si nada para la luz en P, las ondas o rayos continúan su camino.

Sistemas ópticos

- Dioptras
- Lentes
- Espejos

Superficies esféricas

- Supongamos una fuente de luz que llamamos S desde la que salen rayos de luz.
- S está inmersa en un material de índice n_1 .
- Los rayos cruzan una interfase esférica de centro de curvatura C y entran en un medio de índice n₂
- El rayo pasa por el eje de simetría en el punto *P*.

Superficies esféricas

• La longitud de camino óptico entre *S* y *P* es:

 $OPL = n_1\ell_o + n_2\ell_i$

• Usando el teorema del coseno en triángulos SAC y APC y recordando que $\cos \varphi = -\cos(180^o - \varphi)$:

$$\ell_o = [R^2 + (s_o + R)^2 - 2R(s_o + R)\cos\varphi]^{1/2}$$

$$\ell_i = [R^2 + (s_i - R)^2 + 2R(s_i - R) \cos \varphi]^{1/2}$$

Superficies esféricas

• Entonces

$$OPL = n_1 [R^2 + (s_o + R)^2 - 2R(s_o + R) \cos \varphi]^{1/2} + n_2 [R^2 + (s_i - R)^2 + 2R(s_i - R) \cos \varphi]^{1/2}$$

• Minimizando el OPL con respecto a φ

 $d(OPL)/d\varphi = 0,$

Superficies esféricas

• Tenemos que

$$\frac{n_1 R(s_o + R) \sin \varphi}{2\ell_o} - \frac{n_2 R(s_i - R) \sin \varphi}{2\ell_i} = 0$$

• Con lo cual

$$\frac{n_1}{\ell_o} + \frac{n_2}{\ell_i} = \frac{1}{R} \left(\frac{n_2 s_i}{\ell_i} - \frac{n_1 s_o}{\ell_o} \right)$$

Aproximación paraxial

• Para simplificar las expresiones, vamos a suponer que los rayos son casi paralelos al eje óptico. Esto implica que $\cos \varphi \approx 1$ (φ muy pequeño) y entonces:

$$l_0 \approx s_0 \neq l_i \approx s_i$$

• Con esto, la condición de longitud de camino óptico mínimo nos da:

$$\frac{n_1}{s_0} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

Convención de signos para dioptras y lentes delgadas (Hecht)

s ₀ , f ₀	Positivo a la izquierda de V		
<i>x</i> ₀	Positivo a la izquierda de F_0		
s_i, f_i	Positivo a la derecha de V		
x _i	Positivo a la derecha de F_i		
R	Positivo si C está a la derecha de V		
<i>У</i> 0, <i>Уi</i>	Positivo por encima del eje óptico		

Foco objeto

• Si el punto F_0 tiene imagen en el ∞ tenemos:

$$\frac{n_1}{s_o} + \frac{n_2}{\infty} = \frac{n_2 - n_1}{R}$$

• Entonces f_0 es la distancia focal objeto y se define como:

$$f_o \stackrel{\ell_{\varphi}}{=} \frac{\frac{\rho_{\ell_i}}{n_2 - n_1}}{n_2 - n_1} R$$

C

2 4 6

2! 4! 6!

· · · · ·

Foco imagen

 Si el punto F_i es la imagen de un un objeto en el ∞ tenemos:

$$\frac{n_1}{\infty} + \frac{n_2}{s_i} = \frac{n_2 - n_1}{R}$$

• Entonces f_i es la distancia focal imagen y se define como: $(s_i = \infty)$

$$\begin{array}{cccc}
 & n_1 & n_2 & n_2 - n_1 \\
 & f_i = \frac{n_2}{n_2 - n_1} R \\
 & s_o & \infty & R
\end{array}$$

Imágenes y objetos virtuales

- Una imagen es virtual cuando los rayos divergen de ella.
- Análogamente, un objeto es virtual cuando los rayos convergen hacia él.
- Notar que el objeto virtual está en el lado derecho del vértice y por lo tanto va a ser una cantidad negativa

 $(n_g = 1.800)$

(m = 1.261) + 10.0 cm.

Lentes delgadas

- Lentes: elementos de al menos dos superficies refractantes en las que al menos una es curva.
- Vamos a concentrarnos en lentes simples (un solo elemento)
- De espesor despreciable
- Supondremos que el índice de refracción de la lente es mayor que el del medio que la circunda

Tipos de lentes delgadas

Cóncava			
Divergente			
Ο			
Negativa			

CONVEX CONCAVE			
$R_1 > 0$ $R_2 < 0$	$R_1 < 0$ $R_2 > 0$		
Biconvex Biconcave		1	
$\begin{array}{c} R_1 = \infty \\ R_2 < 0 \end{array}$	$R_1 = \infty$ $R_2 > 0$		
Planar convex	Planar concave		
$R_1 > 0 \\ R_2 > 0$	$R_1 > 0 \\ R_2 > 0$		
Meniscus	Meniscus		
convex	concave		

- Vamos a pensar una lente como el conjunto de dos dioptras. Para los puntos conjugados S y P del su sistema, la superficie 1 estará frente a S y la 2 frente a P.
- Supongamos que el índice de la lente es n_l y que está inmersa en un medio n_m :
- Para la superficie 1 de radio R_1 , la ecuación de la dioptra resulta:

$$\frac{n_m}{s_{o1}} + \frac{n_l}{s_{i1}} = \frac{n_l - n_m}{R_1}$$

- Es claro que la superficie 2 va a 'ver rayos provenientes' de la imagen de la superficie 1.
- Los rayos que llegan a la superficie 2 están en un medio de índice n_l, y viven en el espacio objeto de ella.
- Tomando como d la distancia entre las superficies, colocamos como objeto de la superficie 2 la imagen de la superficie 1. En términos de distancia esto es: $|s_{o2}| = |s_{i1}| + d$

- Sabemos que $|s_{o2}| = s_{o2} > 0$ pues está a la izquierda del vértice de la superficie 2.
- Por otro lado, $s_{i1} < 0$ y por lo tanto $|s_{i1}| = -s_{i1}$ pues está la izquierda del vértice de la superficie 2. Entonces:

$$s_{o2} = -s_{i1} + d$$

- En la superficie 2 entonces: $\frac{n_l}{-s_{i1} + d} + \frac{n_m}{s_{i2}} = \frac{n_m - n_l}{R_2}$
- Aquí $n_l > n_m$ y $R_2 < 0$ y por lo tanto el segundo miembro es positivo

• Entonces sumando

$$\frac{n_m}{s_{o1}} + \frac{n_l}{s_{i1}} = \frac{n_l - n_m}{R_1} \quad y \quad \frac{n_l}{-s_{i1} + d} + \frac{n_m}{s_{i2}} = \frac{n_m - n_l}{R_2}$$

Llegamos a

$$\frac{n_m}{s_{o1}} + \frac{n_m}{s_{i2}} = (n_l - n_m) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) + \frac{n_l d}{(s_{i1} - d)s_{i1}}$$

• Esto se simplifica si consideramos una lente delgada ($d \rightarrow 0$) y si suponemos que el medio en el que está la lente es el aire ($n_m = 1$):

$$\frac{1}{s_{o1}} + \frac{1}{s_{i2}} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

ormula del fabricante de lentes

- Como d = 0 los vértices coinciden entonces: $\frac{1}{s_o} + \frac{1}{s_i} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$
- Como con la dioptra, tenemos que

$$\lim_{s_o \to \infty} s_i = f_i = \lim_{s_i \to \infty} s_o = f_o = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

• Es evidente que para una lente delgada $f_i = f_o = f$ entonces:

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Ecuación de las lentes delgadas

Trazado de rayos

- Para formar la imagen de un objeto extenso se considera que cada punto que lo conforma emite luz.
- Se escogen 3 rayos principales para ubicar la imagen de cada punto del objeto.
 - Rayo 1: pasa por el vértice de la lente sin desviarse
 - Rayo 2: paralelo al eje en el espacio objeto, sale pasando por o viniendo del foco imagen.
 - Rayo 3 : pasa por o va hacia el foco objeto, sale paralelo al eje en el espacio imagen.

Aumento lateral

- Para medir el tamaño de una imagen respecto a la del objeto.
- Las distancias transversales por encima del eje óptico se toman positivas, y negativas por debajo.
- En la figura $y_o > 0$ y $y_i < 0$ (invertida).
- Los triángulos AOF_i y P₂P₁F_i son similares. Entonces:

$$\frac{y_o}{|y_i|} = \frac{f}{(s_i - f)}$$

Aumento lateral

- De la misma manera S_2S_1O y P_2P_1O también son similares. Entonces: $\frac{y_o}{|y_i|} = \frac{s_o}{s_i}$
- Donde todas las cantidades son positiva excepto y_i . Entonces

$$\frac{y_o}{y_i} = -\frac{s_o}{s_i}$$

• El aumento lateral M_T se define como:

$$M_T = \frac{y_i}{y_o} = -\frac{s_i}{s_o}$$

• De la figura tenemos $\frac{\overline{SC}}{\overline{SA}} = \frac{\overline{CP}}{\overline{PA}}$

$$\overline{SC} = s_o - |R|$$
 y $\overline{CP} = |R| - s_i$

$$\overline{SC} = s_o + R \text{ y } \overline{CP} = -(s_i + R)$$

• En aproximación paraxial tenemos:

$$\overline{SC} \approx s_o , \overline{PA} \approx s_i$$

• Entonces

$$\frac{s_o + R}{s_o} = -\frac{s_i + R}{s_i}$$
$$\frac{1}{s_o} + \frac{1}{s_i} = -\frac{2}{R}$$

• Como:

$$f_o = f_i = -\frac{R}{2}$$

• Entonces:

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

TABLE 5.4	Sign Convention for Spherical Mirrors				
Quantity	Sign				
	+	_			
S _O	Left of V, real object	Right of V, virtual object			
<i>s</i> _i	Left of V, real image	Right of V, virtual image			
f	Concave mirror	Convex mirror			
R	C right of V, convex	C left of V , concave			
Уо	Above axis, erect object	Below axis, inverted object			
<i>Y</i> _i	Above axis, erect image	Below axis, inverted image			

TABLE 5.5	Image	a of Dool Oh						
TABLE 5.5Images of Real Objects Formed bySpherical Mirrors								
Concave								
Object	Image							
Location	Туре	Location	Orientation	Relative Size				
$\infty > s_o > 2f$	Real	$f < s_i < 2f$	Inverted	Minified				
$s_o = 2f$	Real	$s_i = 2f$	Inverted	Same size				
$f < s_o < 2f$	Real	$\infty > s_i > 2f$	Inverted	Magnified				
$s_o = f$		$\pm \infty$						
$s_o < f$	Virtual	$ s_i > s_o$	Erect	Magnified				
		Convex						
Object	Image							
Location	Туре	Location	Orientation	Relative Size				
Anywhere	Virtual	$ s_i < f ,$	Erect	Minified				
		$s_o > s_i $						

. .

. .