
Óptica Geométrica

• Se denomina así al estudio de la propagación de la luz en términos de 
rayos y no tiene en cuenta aspectos electromagnéticos ni 
ondulatorios de la luz.
• No incluye fenómenos ondulatorios tales como la difracción, la 

interferencia o la polarización. En la práctica equivale a trabajar con 
longitudes de onda muy pequeñas. 
• Se trata de un método que simplifica mucho el proceso de hallar la 

marcha de la luz a través de un sistema de interfases entre medios. 



Sistemas ópticos

• Una fuente puntual envía 
ondas esféricas.
• Eso equivale a rayos radiales.
• Un cono de rayos entra al 

sistema óptico, el cual hace 
que los rayos converjan a un 
punto P.
• Los frentes de ondas se 

invierten 
• Si nada para la luz en P, las 

ondas o rayos continúan su 
camino. 
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the wave slows upon entering the new substance. The central 
area of the wavefront travels more slowly than its outer extrem-
ities, which are still moving quickly through the incident me-
dium. These extremities overtake the midregion, continuously 

spreading out and weakening as it progresses. In just the reverse, 
it’s frequently necessary to collect incoming parallel rays and 
bring them together at a point, thereby focusing the energy, as is 
done with a burning-glass or a telescope lens. Moreover, since 
the light reflected from someone’s face scatters out from billions 
of point sources, a lens that causes each diverging wavelet to 
converge could form an image of that face (Fig. 5.2).

5.2.1 Aspherical Surfaces

To see how a lens works, imagine that we interpose in the path 
of a wave a transparent substance in which the wave’s speed  
is different than it was initially. Figure 5.3a presents a cross-
sectional view of a diverging spherical wave traveling in an in-
cident medium of index n i impinging on the curved interface of 
a transmitting medium of index n t. When n t is greater than n i, 

Figure 5.2  A person’s face, like 
everything else we ordinarily see in 
reflected light, is covered with countless 
atomic scatterers.
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Figure 5.3  A hyperbolic interface between air and glass. (a) The wave-
fronts bend and straighten out. (b) The rays become parallel. (c) The hyper-
bola is such that the optical path from S to A to D is the same no matter 
where A is.
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Figure 5.1  Conjugate foci. (a) A point source  
S sends out spherical waves. A cone of rays enters 
an optical system that inverts the wavefronts, 
causing them to converge on point-P. (b) In cross 
section rays diverge from S, and a portion of them 
converge to P. If nothing stops the light at P, it 
continues on.
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Sistemas ópticos

• Dioptras

• Lentes

• Espejos



Superficies esféricas

• Supongamos una fuente de luz que 
llamamos 𝑆 desde la que salen rayos 
de luz.
• S está inmersa en un material de índice 
𝑛#.
• Los rayos cruzan una interfase esférica 

de centro de curvatura 𝐶 y entran en 
un medio de índice 𝑛%
• El rayo pasa por el eje de simetría en el 

punto 𝑃. 
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Using the law of cosines in triangles SAC and ACP along with 
the fact that cos w = -cos(180° - w), we get

/o = [R2 + (so + R)2 - 2R(so + R) cos w]1>2
and /i = [R2 + (si - R)2 + 2R(si - R) cos w]1>2 

The OPL can be rewritten as

OPL = n1[R2 + (so + R)2 - 2R(so + R) cos w]1>2
 + n2[R2 + (si - R)2 + 2R(si - R) cos w]1>2
All the quantities in the diagram (si, so, R, etc.) are positive 
numbers, and these form the basis of a sign convention that is 
gradually unfolding and to which we shall return time and again 
(see Table 5.1). Inasmuch as the point-A moves at the end of a 
fixed radius (i.e., R 5 constant), w is the position variable, and 
thus setting d(OPL)>dw = 0, via Fermat’s Principle we have

 
n1R(so + R) sin w

2/o
-

n2R(si - R) sin w
2/i

= 0 (5.4)

from which it follows that

 
n1

/o
+

n2

/i
= 1

R
 an2si

/i
-

n1so

/o
b (5.5)

become more spherical (see photo). Such surfaces are com-
monly generated in batches by automatic grinding and polish-
ing machines.

Not surprisingly, the vast majority of quality lenses in use 
today have surfaces that are segments of spheres. Our intent 
here is to establish techniques for using such surfaces to simul-
taneously image a great many object points in light composed 
of a broad range of frequencies. Image errors, known as aber-
rations, will occur, but it is possible with the present technology 
to construct high-quality spherical lens systems whose aberra-
tions are so well controlled that image fidelity is limited only by 
diffraction.

Figure 5.6 depicts a wave from the point source S imping-
ing on a spherical interface of radius R centered at C. The 
point-V is called the vertex of the surface. The length so = SV 
is known as the object distance. The ray SA will be refracted 
at the interface toward the local normal (n2 7 n1) and there-
fore toward the central or optical axis. Assume that at some 
point-P the ray will cross the axis, as will all other rays inci-
dent at the same angle ui (Fig. 5.7). The length si = VP is the 
image distance. Fermat’s Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question,

 OPL = n1/o + n2/i (5.3)

Polishing a spherical lens. (Optical Society of America)
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Figure 5.6  
Refraction at a 
spherical interface. 
Conjugate foci.
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Figure 5.7  Rays incident at the same angle.

TABLE 5.1  Sign Convention for Spherical Refracting 
Surfaces and Thin Lenses* (Light Entering from the Left)

so, ƒo 1 left of V

xo 1 left of Fo

si, ƒi 1 right of V

xi 1 right of Fi

R 1 if C is right of V

yo, yi 1 above optical axis

*This table anticipates the imminent introduction of a few quantities not yet  
spoken of.
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Superficies esféricas

• La longitud de camino óptico entre 𝑆 y 𝑃
es:

• Usando el teorema del coseno en 
triángulos SAC y APC y recordando que 
cos𝜑 = −cos(1801 − 𝜑):
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point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 

TABLE 5.1 Sign Convention for Spherical 
Refracting Surfaces and Thin Lenses* 
(Light Entering from the Let?) 

+ left of V 

+ left of F,, 

+ right of V 

+ right of F, 

+ if (' i \  right of V 

+ above opt~cal ar l \  

'This table anticipates the irnm~nent ~ntroduct~on of a few quantl- 
ties not yet spoken of. 

we have 

n,R(s,, + R )  \in cp trlR(s, - R )  sin cp 
- = o  (5.4) 

2C,, 2 t 1  

from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
Recall that 

I f  we asjume small values o f  cp (i.e., A close to V ) ,  cos cp = 1 .  
Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 

4, -- A , ,  and to that approximation 

W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
r~nrrging wtrvqfront segtnent rorr-esponcling to these pclrelxicll 
rL1y.s is e~.set~tie~lly ~phericrd trncl wil1,fi)rni tr "per-krt" itnerge 
rrt its crnter P loc~ited rlt s ,  . Notice that Eq. (5.8) is indepen- 
dent o f  the location o f  A over a small area about the symmetry 
axis, namely, the pot-crxiell region. Gauss, in 1841, was the first 
to give a systematic exposition o f  the formation o f  images 

154 Chapter 5 Geornetr~cal Opt~cs 

point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 
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we have 

n,R(s,, + R )  \in cp trlR(s, - R )  sin cp 
- = o  (5.4) 
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from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
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Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 
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than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
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 5.2  Lenses 163

Using the law of cosines in triangles SAC and ACP along with 
the fact that cos w = -cos(180° - w), we get

/o = [R2 + (so + R)2 - 2R(so + R) cos w]1>2
and /i = [R2 + (si - R)2 + 2R(si - R) cos w]1>2 

The OPL can be rewritten as

OPL = n1[R2 + (so + R)2 - 2R(so + R) cos w]1>2
 + n2[R2 + (si - R)2 + 2R(si - R) cos w]1>2
All the quantities in the diagram (si, so, R, etc.) are positive 
numbers, and these form the basis of a sign convention that is 
gradually unfolding and to which we shall return time and again 
(see Table 5.1). Inasmuch as the point-A moves at the end of a 
fixed radius (i.e., R 5 constant), w is the position variable, and 
thus setting d(OPL)>dw = 0, via Fermat’s Principle we have

 
n1R(so + R) sin w

2/o
-

n2R(si - R) sin w
2/i

= 0 (5.4)

from which it follows that
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+
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become more spherical (see photo). Such surfaces are com-
monly generated in batches by automatic grinding and polish-
ing machines.

Not surprisingly, the vast majority of quality lenses in use 
today have surfaces that are segments of spheres. Our intent 
here is to establish techniques for using such surfaces to simul-
taneously image a great many object points in light composed 
of a broad range of frequencies. Image errors, known as aber-
rations, will occur, but it is possible with the present technology 
to construct high-quality spherical lens systems whose aberra-
tions are so well controlled that image fidelity is limited only by 
diffraction.

Figure 5.6 depicts a wave from the point source S imping-
ing on a spherical interface of radius R centered at C. The 
point-V is called the vertex of the surface. The length so = SV 
is known as the object distance. The ray SA will be refracted 
at the interface toward the local normal (n2 7 n1) and there-
fore toward the central or optical axis. Assume that at some 
point-P the ray will cross the axis, as will all other rays inci-
dent at the same angle ui (Fig. 5.7). The length si = VP is the 
image distance. Fermat’s Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question,

 OPL = n1/o + n2/i (5.3)

Polishing a spherical lens. (Optical Society of America)
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Figure 5.6  
Refraction at a 
spherical interface. 
Conjugate foci.
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P

Figure 5.7  Rays incident at the same angle.

TABLE 5.1  Sign Convention for Spherical Refracting 
Surfaces and Thin Lenses* (Light Entering from the Left)

so, ƒo 1 left of V

xo 1 left of Fo

si, ƒi 1 right of V

xi 1 right of Fi

R 1 if C is right of V

yo, yi 1 above optical axis

*This table anticipates the imminent introduction of a few quantities not yet  
spoken of.
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Superficies esféricas

• Entonces

• Minimizando el 𝑂𝑃𝐿 con respecto a 𝜑
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point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 

TABLE 5.1 Sign Convention for Spherical 
Refracting Surfaces and Thin Lenses* 
(Light Entering from the Let?) 

+ left of V 

+ left of F,, 

+ right of V 

+ right of F, 

+ if (' i \  right of V 

+ above opt~cal ar l \  

'This table anticipates the irnm~nent ~ntroduct~on of a few quantl- 
ties not yet spoken of. 

we have 

n,R(s,, + R )  \in cp trlR(s, - R )  sin cp 
- = o  (5.4) 

2C,, 2 t 1  

from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
lem 5.1 concerning the Cartesian oval which is the interface 
configuration that would bring any ray, regardless o f  cp, to P.) 
The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
thereby simplify Eq. (5.5),  are crucial in all that is to follow. 
Recall that 

I f  we asjume small values o f  cp (i.e., A close to V ) ,  cos cp = 1 .  
Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 

4, -- A , ,  and to that approximation 

W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
r~nrrging wtrvqfront segtnent rorr-esponcling to these pclrelxicll 
rL1y.s is e~.set~tie~lly ~phericrd trncl wil1,fi)rni tr "per-krt" itnerge 
rrt its crnter P loc~ited rlt s ,  . Notice that Eq. (5.8) is indepen- 
dent o f  the location o f  A over a small area about the symmetry 
axis, namely, the pot-crxiell region. Gauss, in 1841, was the first 
to give a systematic exposition o f  the formation o f  images 
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Using the law of cosines in triangles SAC and ACP along with 
the fact that cos w = -cos(180° - w), we get

/o = [R2 + (so + R)2 - 2R(so + R) cos w]1>2
and /i = [R2 + (si - R)2 + 2R(si - R) cos w]1>2 

The OPL can be rewritten as

OPL = n1[R2 + (so + R)2 - 2R(so + R) cos w]1>2
 + n2[R2 + (si - R)2 + 2R(si - R) cos w]1>2
All the quantities in the diagram (si, so, R, etc.) are positive 
numbers, and these form the basis of a sign convention that is 
gradually unfolding and to which we shall return time and again 
(see Table 5.1). Inasmuch as the point-A moves at the end of a 
fixed radius (i.e., R 5 constant), w is the position variable, and 
thus setting d(OPL)>dw = 0, via Fermat’s Principle we have
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become more spherical (see photo). Such surfaces are com-
monly generated in batches by automatic grinding and polish-
ing machines.

Not surprisingly, the vast majority of quality lenses in use 
today have surfaces that are segments of spheres. Our intent 
here is to establish techniques for using such surfaces to simul-
taneously image a great many object points in light composed 
of a broad range of frequencies. Image errors, known as aber-
rations, will occur, but it is possible with the present technology 
to construct high-quality spherical lens systems whose aberra-
tions are so well controlled that image fidelity is limited only by 
diffraction.

Figure 5.6 depicts a wave from the point source S imping-
ing on a spherical interface of radius R centered at C. The 
point-V is called the vertex of the surface. The length so = SV 
is known as the object distance. The ray SA will be refracted 
at the interface toward the local normal (n2 7 n1) and there-
fore toward the central or optical axis. Assume that at some 
point-P the ray will cross the axis, as will all other rays inci-
dent at the same angle ui (Fig. 5.7). The length si = VP is the 
image distance. Fermat’s Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question,

 OPL = n1/o + n2/i (5.3)
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TABLE 5.1  Sign Convention for Spherical Refracting 
Surfaces and Thin Lenses* (Light Entering from the Left)

so, ƒo 1 left of V

xo 1 left of Fo

si, ƒi 1 right of V

xi 1 right of Fi

R 1 if C is right of V

yo, yi 1 above optical axis

*This table anticipates the imminent introduction of a few quantities not yet  
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point P the ray will cross the axis, as will all other rays inci- 
dent at the same angle 0, (Fig. 5.7). The length s, = v i s  the 
image distance. Fermat's Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question, 

OPL = nit,, + n2 t ,  (5.3) 

Using the law o f  cosines in triangles SAC and ACP along with 
the fact that cos cp = c o s ( l 8 0 "  - cp), we get 

t,, = [R2 + (s,, + R)' - 2R(.s,, + R )  cos c p ]  " l  

and C ,  = IR' + ( s ,  - R)' + 2R(s, - R )  cos c p l l "  

The OPL can be rewritten as 

OPL = n I [ R 2  + (s,, + R)' - 2R(s,  + R )  cos cp]'12 

+ 1 1 ~ 1 ~ '  + (s,  - R)' + 2R(.s, - R )  cos cp]"' 

All the quantities in tlie diagram (s,, s,,, R, etc.) are positive 
numbers, and these form the basis o f  a sign cwn~etltion which 
is gradually unfolding and to which we shall return time and 
again (see Table 5.1 ). Inasmuch as the point A moves at the 
end o f  a fixed rad i~~s  (i.e., R = constant), cp is the position vari- 
able, and thus setting d(OPL)/clcp = 0, via Fermat's Principle 
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Using the law of cosines in triangles SAC and ACP along with 
the fact that cos w = -cos(180° - w), we get

/o = [R2 + (so + R)2 - 2R(so + R) cos w]1>2
and /i = [R2 + (si - R)2 + 2R(si - R) cos w]1>2 

The OPL can be rewritten as

OPL = n1[R2 + (so + R)2 - 2R(so + R) cos w]1>2
 + n2[R2 + (si - R)2 + 2R(si - R) cos w]1>2
All the quantities in the diagram (si, so, R, etc.) are positive 
numbers, and these form the basis of a sign convention that is 
gradually unfolding and to which we shall return time and again 
(see Table 5.1). Inasmuch as the point-A moves at the end of a 
fixed radius (i.e., R 5 constant), w is the position variable, and 
thus setting d(OPL)>dw = 0, via Fermat’s Principle we have

 
n1R(so + R) sin w

2/o
-

n2R(si - R) sin w
2/i

= 0 (5.4)

from which it follows that

 
n1

/o
+

n2

/i
= 1

R
 an2si

/i
-

n1so

/o
b (5.5)

become more spherical (see photo). Such surfaces are com-
monly generated in batches by automatic grinding and polish-
ing machines.

Not surprisingly, the vast majority of quality lenses in use 
today have surfaces that are segments of spheres. Our intent 
here is to establish techniques for using such surfaces to simul-
taneously image a great many object points in light composed 
of a broad range of frequencies. Image errors, known as aber-
rations, will occur, but it is possible with the present technology 
to construct high-quality spherical lens systems whose aberra-
tions are so well controlled that image fidelity is limited only by 
diffraction.

Figure 5.6 depicts a wave from the point source S imping-
ing on a spherical interface of radius R centered at C. The 
point-V is called the vertex of the surface. The length so = SV 
is known as the object distance. The ray SA will be refracted 
at the interface toward the local normal (n2 7 n1) and there-
fore toward the central or optical axis. Assume that at some 
point-P the ray will cross the axis, as will all other rays inci-
dent at the same angle ui (Fig. 5.7). The length si = VP is the 
image distance. Fermat’s Principle maintains that the optical 
path length OPL will be stationary; that is, its derivative with 
respect to the position variable will be zero. For the ray in 
question,

 OPL = n1/o + n2/i (5.3)

Polishing a spherical lens. (Optical Society of America)
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Figure 5.6  
Refraction at a 
spherical interface. 
Conjugate foci.

S

P

Figure 5.7  Rays incident at the same angle.

TABLE 5.1  Sign Convention for Spherical Refracting 
Surfaces and Thin Lenses* (Light Entering from the Left)

so, ƒo 1 left of V

xo 1 left of Fo

si, ƒi 1 right of V

xi 1 right of Fi

R 1 if C is right of V

yo, yi 1 above optical axis

*This table anticipates the imminent introduction of a few quantities not yet  
spoken of.
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Aproximación paraxial

• Para simplificar las expresiones, vamos a 
suponer que los rayos son casi paralelos 
al eje óptico. Esto implica que cos𝜑 ≈ 1
(𝜑 muy pequeño) y entonces:

𝑙7 ≈ 𝑠7 y 𝑙9 ≈ 𝑠9
• Con esto, la condición de longitud de 

camino óptico mínimo nos da:
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from which it follows that 

This is the relationship that must hold among the parameters 
for a ray going from S to P by way o f  refraction at the spheri- 
cal interface. Although this expression is exact, it is rather 
complicated. I f  A is moved to a new location by changing cp, 
the new ray will not intercept the optical axis at P. (See Prob- 
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The approximations that are ~ ~ s e d  to represent t,, and 4,, and 
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Con\equently. tlie expressions for €(, and 4, yield e,, = A,,, 
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W c  could have b e g ~ ~ n  this derivation with Snell's 1,aw rather 
than Fermat's Principle (Problem 5.5), in which case small 
values o f  cp would have led to sin cp = cp and Eq. (5.8) once 
again. This approximation delineates the domain o f  what is 
called,fir.vt-older theor-y; we'll examine third-order- theory (sin 
cp ---- cp - cp3/3!) in the next chapter. Rays that arrive at shal- 
low angles with respect to the optical axis (such that cp and k 
are appropriately small) are known as paraxial rays. The 
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Ecuación de la dioptra en
aproximación paraxial
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Convención de signos para dioptras y lentes 
delgadas (Hecht)

𝑠7, 𝑓7 Positivo a la izquierda de 𝑉
𝑥7 Positivo a la izquierda de 𝐹7
𝑠9, 𝑓9 Positivo a la derecha de 𝑉
𝑥9 Positivo a la derecha de 𝐹9
𝑅 Positivo si 𝐶 está a la derecha de 𝑉

𝑦7, 𝑦9 Positivo por encima del eje óptico



Foco objeto

• Si el punto 𝐹7 tiene imagen en el ∞ tenemos:

• Entonces 𝑓7 es la distancia focal objeto y se 
define como:
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r*: 

-= F, : - , - . / - C / - _  - v * 

I .L 

I. I 
1, P P 

Figure 5.8 Plane waves propagatmg beyond a spher~cal Interface- 
the object focus Figure 5.10 A v~rtual Image po~n t  

undcr the above approximation, and the result is variously 
known asfirst-order, prwtr.rir11. or Gaussian Optics. It soon 
became the basic theoretical tool by which lenses would be 
designed for several decades to come. Tf the optical system is 
well corrected, an incident spherical wave will emerge in a 
fo rm very closely resembling a spherical wave. Consequently, 
as the perfection of the system increases, it morc closely 
approaches first-order theory. Deviations from that of paraxi- 
al analysis will provide a convenient measure of the quality of 
an actual optical device. 

If the point F,, in Fig. 5.8 is imaged at infinity (s, = x), we 
have 

n1 - n ,  11 + = 
. yo  'Jt R 

That special object distance is defined as the first focal length 
or the object focal length, s,, --,f;,, so that 

The point F,, is known as the first or object focus. Similarly, 

Figure 5.9 The reshaping of plane Into spherical waves at a spherical 
interface-the lrnage focus. 

the second or image focus is the axial point F,, where the 
image is formed when s,, = m; that is, 

Defining the second or image focal 1ength.h as equal to s, in 
this special case (Fig. 5.9). we have 

Recall that an image is virtual when the rays diverge from 
it (Fig. 5.10). Analogously, an object is virtual when the rays 
converge toward it (Fig. 5.1 1 ). Observe that the virtual object 
is now on the right-hand side of the vertex, and therefore s,, 
will be a negative quantity. Moreover, the surface is concave, 
and its radius will also be negative, as required by Eq. (5.9). 
since,f;, would be negative. In the same way, the virtual image 
distance appearing to the left of Vis negative. 

Figure 5.11 
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That special object distance is defined as the first focal length 
or the object focal length, so K ƒo, so that

 ƒo =
n1

n2 - n1
 R (5.9)

Point-Fo is known as the first or object focus. Similarly, the 
second or image focus is the axial point-Fi, where the image is 
formed when so = ∞ ; that is,

n1

∞
+

n2

si
=

n2 - n1

R

Defining the second or image focal length ƒi as equal to si in 
this special case (Fig. 5.9), we have

 ƒi =
n2

n2 - n1
 R (5.10)

Recall that an image is virtual when the rays diverge from it 
(Fig. 5.10). Analogously, an object is virtual when the rays 
converge toward it (Fig. 5.11). Observe that the virtual object is 
now on the right-hand side of the vertex, and therefore so will be 
a negative quantity. Moreover, the surface is concave, and its 
radius will also be negative, as required by Eq. (5.9), since ƒo
would be negative. In the same way, the virtual image distance 
appearing to the left of V is negative.

This is the relationship that must hold among the parameters 
for a ray going from S to P by way of refraction at the spheri-
cal interface. Although this expression is exact, it is rather 
complicated. If A is moved to a new location by changing w, 
the new ray will not intercept the optical axis at P. (See Prob-
lem 5.1 concerning the Cartesian oval, which is the interface 
configuration that would bring any ray, regardless of w, to P.) 
The approximations that are used to represent /o and /i, and 
thereby simplify Eq. (5.5), are crucial in all that is to follow. 
Recall that

 cos w = 1 -
w2

2!
+
w4

4!
-
w6

6!
+ g  (5.6)

and sin w = w -
w3

3!
+
w5

5!
-
w7

7!
+ g  (5.7)

If we assume small values of w (i.e., A close to V ), cos w ≈ 1.
Consequently, the expressions for /o and /i yield /o ≈ so, 
/i ≈ si, and to that approximation

 
n1

so
+

n2

si
=

n2 - n1

R
 (5.8)

We could have begun this derivation with Snell’s Law rather 
than Fermat’s Principle (Problem 5.5), in which case small  
values of w would have led to sin w ≈ w and Eq. (5.8) once 
again. This approximation delineates the domain of what is 
called first-order theory; we’ll examine third-order theory 
(sin w ≈ w - w3>3!) in the next chapter. Rays that arrive at 
shallow angles with respect to the optical axis (such that w 
and h are appropriately small) are known as paraxial rays. 
The emerging wavefront segment corresponding to these 
paraxial rays is essentially spherical and will form a “per-
fect” image at its center P located at si. Notice that Eq. (5.8) 
is independent of the location of A over a small area about 
the symmetry axis, namely, the paraxial region. Gauss, in 
1841, was the first to give a systematic exposition of the 
formation of images under the above approximation, and 
the result is variously known as first-order, paraxial, or 
Gaussian Optics. It soon became the basic theoretical tool 
by which lenses would be designed for several decades to 
come. If the optical system is well corrected, an incident 
spherical wave will emerge in a form very closely resem-
bling a spherical wave. Consequently, as the perfection of 
the system increases, it more closely approaches first-order 
theory. Deviations from that of paraxial analysis will pro-
vide a convenient measure of the quality of an actual optical 
device.

If point-Fo in Fig. 5.8 is imaged at infinity (si = ∞), we  
have

n1

so
+

n2

∞
=

n2 - n1

R

Fo

fo

Figure 5.8  Plane waves propagating beyond a spherical interface—the 
object focus.

fi

Fi
C

Figure 5.9  The reshaping of plane into spherical waves at a spherical 
interface—the image focus.

M05_HECH6933_05_GE_C05.indd   164 26/08/16   1:32 PM



Foco imagen

• Si el punto 𝐹9 es la imagen de un un 
objeto en el ∞ tenemos:

• Entonces 𝑓9 es la distancia focal imagen y 
se define como:
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That special object distance is defined as the first focal length 
or the object focal length, so K ƒo, so that

 ƒo =
n1

n2 - n1
 R (5.9)

Point-Fo is known as the first or object focus. Similarly, the 
second or image focus is the axial point-Fi, where the image is 
formed when so = ∞ ; that is,

n1

∞
+

n2

si
=

n2 - n1

R

Defining the second or image focal length ƒi as equal to si in 
this special case (Fig. 5.9), we have

 ƒi =
n2

n2 - n1
 R (5.10)
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si
=
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Imágenes y objetos virtuales

• Una imagen es virtual cuando 
los rayos divergen de ella. 
• Análogamente, un objeto es 

virtual cuando los rayos 
convergen hacia él. 
• Notar que el objeto virtual está 

en el lado derecho del vértice y 
por lo tanto va a ser una 
cantidad negativa

 5.2  Lenses 165

are far more subtle in appearance (see photo). Most often a lens 
has two or more refracting interfaces, and at least one of these 
is curved. Generally, the nonplanar surfaces are centered on a 
common axis. These surfaces are most frequently spherical seg-
ments and are often coated with thin dielectric films to control 
their transmission properties (see Section 9.9).

A lens that consists of one element (i.e., it has only two re-
fracting surfaces) is a simple lens. The presence of more than 
one element makes it a compound lens. A lens is also classified 
as to whether it is thin or thick—that is, whether or not its thick-
ness is effectively negligible. We will limit ourselves, for the 
most part, to centered systems (for which all surfaces are rota-
tionally symmetric about a common axis) of spherical surfaces. 
Under these restrictions, the simple lens can take the forms 
shown in Fig. 5.12.

Lenses that are variously known as convex, converging, or 
positive are thicker at the center and so tend to decrease the 
radius of curvature of the wavefronts. In other words, the inci-
dent wave converges more as it traverses the lens, assuming, 
of course, that the index of the lens is greater than that of the 

EXAMPLE 5.2

A long horizontal flint-glass (ng = 1.800) cylinder is 20.0 cm in 
diameter and has a convex hemispherical left end ground and pol-
ished onto it. The device is immersed in ethyl alcohol (na = 1.361) 
and a tiny LED is located on the central axis in the liquid 80.0 cm 
to the left of the vertex of the hemisphere. Locate the image of 
the LED. What would happen if the alcohol was replaced by air?

SOLUTION 

Return to Eq. (5.8),

n1

so
+

n2

si
=

n2 - n1

R

Here n1 = 1.361, n2 = 1.800, so = +80.0 cm, and R =
+10.0 cm. We can work the problem in centimeters, where-
upon the equation becomes 

 
1.361
80.0

+ 1.800
si

= 1.800 - 1.361
10.0

 
1.800

si
= 0.439

10
- 1.361

80
 1.800 = (0.043 9 - 0.017 01)si

si = 66.9 cm

With the alcohol in place the image is within the glass, 66.9 cm 
to the right of the vertex (si 7 0). Removing the liquid,

1
80.0

+ 1.800
si

= 0.800
10.0

and

si = 26.7 cm

The refraction at the interface depends on the ratio (n2>n1) of 
the two indices. The bigger is (n2 - n1), the smaller will be si.

5.2.3 Thin Lenses

Lenses are made in a wide range of forms; for example, there 
are acoustic and microwave lenses. Some of the latter are made 
of glass or wax in easily recognizable shapes, whereas others 

V

Fo

so

C

Figure 5.11  A virtual object point.

VFi C

Figure 5.10  A virtual image point.

A lens for short-wavelength radiowaves. The disks serve to refract  
these waves much as rows of atoms refract light. (Optical Society of America)
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Objeto virtual



Lentes delgadas

• Lentes: elementos de al menos dos superficies refractantes en las que 
al menos una es curva.

• Vamos a concentrarnos en lentes simples (un solo elemento)

• De espesor despreciable

• Supondremos que el índice de refracción de la lente es mayor que el 
del medio que la circunda



Tipos de lentes delgadas

Convexa,
Convergente 

o 
Positiva

Cóncava
Divergente

o 
Negativa

166 Chapter 5 Geometrical Optics

at so1 will appear to meet at P′, a distance, which we now call 
si1, from V1, given by

 
nm

so1
+

nl

si1
=

nl - nm

R1
 (5.11)

media in which it is immersed. Concave, diverging, or negative 
lenses, on the other hand, are thinner at the center and tend  
to advance that portion of the incident wavefront, causing it to  
diverge more than it did prior to entry.

Thin-Lens Equations

Return to the discussion of refraction at a single spherical in-
terface, where the location of the conjugate points-S and -P is  
given by

 
n1

so
+

n2

si
=

n2 - n1

R
 [5.8]

When so is large for a fixed (n2 - n1)>R, si is relatively small. 
The cone of rays from S has a small central angle, the rays do not 
diverge very much, and the refraction at the interface can cause 
them all to converge at P. As so decreases, the ray-cone angle 
increases, the divergence of the rays increases, and si moves 
away from the vertex; that is, both ui and ut increase until finally 
so = ƒ o and si = ∞ . At that point, n1>so = (n2 - n1)>R, so that if 
so gets any smaller, si will have to be negative, if Eq. (5.8) is to 
hold. In other words, the image becomes virtual (Fig. 5.13).

Let’s now locate the conjugate points for a lens of index nl
surrounded by a medium of index nm, as in Fig. 5.14, where 
another end has simply been ground onto the piece in Fig. 5.13c. 
This certainly isn’t the most general set of circumstances, but it is 
the most common, and even more cogently, it is the simplest.* 
We know from Eq. (5.8) that the paraxial rays issuing from S  

R1 ! 0
R2 " 0

R1 " 0
R2 ! 0

CONVEX CONCAVE

Biconvex Biconcave

R1 ! 0
R2 ! 0

R1 ! 0
R2 ! 0

Meniscus
convex

Meniscus
concave

R1 # ∞
R2 " 0

R1 # ∞
R2 ! 0

Planar convex Planar concave

Figure 5.12  Cross sections of various centered spherical simple lenses. 
The surface on the left is Þ1, since it is encountered first. Its radius is R1. 
(Melles Griot)

PS

(a)

S

(b)

P! S

(c)

Figure 5.13  Refraction at a spherical interface between two transparent 
media shown in cross section.

A lens focusing a beam of light. (L-3 Communications Tinsley Labs Inc.)

*See Jenkins and White, Fundamentals of Optics, p. 57, for a derivation containing 
three different indices.
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Ecuación de lentes delgadas

• Vamos a pensar una lente como el conjunto de 
dos dioptras. Para los puntos conjugados S y P del 
sistema, la superficie 1 estará frente a S y la 2 
frente a P.
• Supongamos que el índice de la lente es 𝑛B y que 

está inmersa en un medio 𝑛C :
• Para la superficie 1 de radio 𝑅# , la ecuación de la 

dioptra resulta:

𝑛C
𝑠1#

+
𝑛B
𝑠9#

=
𝑛B − 𝑛C
𝑅#

Puntos conjugados en una lente

Superficie 2

Superficie 1





Ecuación de lentes delgadas

• Es claro que la superficie 2 va a ‘ver rayos 
provenientes’ de la imagen de la 
superficie 1.  
• Los rayos que llegan a la superficie 2 

están en un medio de índice 𝑛B, y viven 
en el espacio objeto de ella.
• Tomando como 𝑑 la distancia entre las 

superficies, colocamos como objeto de la 
superficie 2 la imagen de la superficie 1. 
En términos de distancia esto es: 

𝑠1% = 𝑠9# + 𝑑



Ecuación de lentes delgadas

• Sabemos que 𝑠1% = 𝑠1% > 0 pues está a 
la izquierda del vértice de la superficie 2.
• Por otro lado, 𝑠9# < 0 y por lo tanto 𝑠9# =
−𝑠9# pues está la izquierda del vértice de la 
superficie 2. Entonces:

𝑠1% = −𝑠9# + 𝑑
• En la superficie 2 entonces:

𝑛B
−𝑠9# + 𝑑

+
𝑛C
𝑠9%

=
𝑛C − 𝑛B
𝑅%

• Aquí 𝑛B > 𝑛C y 𝑅% < 0 y por lo tanto el 
segundo miembro es positivo



Ecuación de lentes delgadas

• Entonces sumando 
HI
JKL
+ HM
JNL
= HMOHI

PL
y   HM

OJNLQR
+ HI

JNS
= HIOHM

PS
Llegamos a

𝑛C
𝑠1#

+
𝑛C
𝑠9%

= (𝑛B − 𝑛C)
1
𝑅#
−
1
𝑅%

+
𝑛B𝑑

(𝑠9# − 𝑑)𝑠9#
• Esto se simplifica si consideramos una lente delgada (𝑑 → 0) y si 

suponemos que el medio en el que está la lente es el aire (𝑛C = 1):
1
𝑠1#

+
1
𝑠9%

= (𝑛B − 1)
1
𝑅#
−
1
𝑅%

Formula del fabricante de lentes



Ecuación de lentes delgadas

• Como 𝑑 = 0 los vértices coinciden entonces:
1
𝑠1
+
1
𝑠9
= (𝑛B − 1)

1
𝑅#
−
1
𝑅%

• Como con la dioptra, tenemos que

lim
JK→X

𝑠9 = 𝑓9 = lim
JN→X

𝑠1 = 𝑓1 = (𝑛B − 1)
1
𝑅#
−
1
𝑅%

• Es evidente que para una lente delgada 𝑓9 = 𝑓1 = 𝑓 entonces:

1
𝑠1
+
1
𝑠9
=
1
𝑓

Ecuación de las lentes delgadas



Trazado de rayos
• Para formar la imagen de un objeto 

extenso se considera que cada punto 
que lo conforma emite luz. 
• Se escogen 3 rayos principales para 

ubicar la imagen de cada punto del 
objeto. 
• Rayo 1: pasa por el vértice de la lente sin 

desviarse
• Rayo 2: paralelo al eje en el espacio 

objeto, sale pasando por o viniendo del 
foco imagen.

• Rayo 3 : pasa por o va hacia el foco 
objeto, sale paralelo al eje en el espacio 
imagen.



Aumento lateral

• Para medir el tamaño de una imagen 
respecto a la del objeto.
• Las distancias transversales por encima 

del eje óptico se toman positivas, y 
negativas por debajo. 
• En la figura 𝑦1 > 0 y 𝑦9 < 0 (invertida).
• Los triángulos 𝐴𝑂𝐹9 y 𝑃%𝑃#𝐹9 son 

similares. Entonces:
𝑦1
𝑦9

=
𝑓

𝑠9 − 𝑓



Aumento lateral

• De la misma manera 𝑆%𝑆#𝑂 y 𝑃%𝑃#𝑂
también son similares. Entonces:

𝑦1
𝑦9

=
𝑠1
𝑠9

• Donde todas las cantidades son positivas 
excepto 𝑦9. Entonces

𝑦1
𝑦9
= −

𝑠1
𝑠9

• El aumento lateral 𝑀[se define como:
𝑀[ =

𝑦9
𝑦1
= −

𝑠9
𝑠1



Espejos

• De la figura tenemos
𝑆𝐶
𝑆𝐴

=
𝐶𝑃
𝑃𝐴

𝑆𝐶 = 𝑠1 − 𝑅 y  𝐶𝑃 = 𝑅 − 𝑠9

𝑆𝐶 = 𝑠1 + 𝑅 y  𝐶𝑃 = − 𝑠9 + 𝑅



Espejos

• En aproximación paraxial tenemos: 
𝑆𝐶 ≈ 𝑠1 , 𝑃𝐴 ≈ 𝑠9

• Entonces
𝑠1 + 𝑅
𝑠1

= −
𝑠9 + 𝑅
𝑠9

1
𝑠1
+
1
𝑠9
= −

2
𝑅



Espejos

• Como:

𝑓1 = 𝑓9 = −
𝑅
2

• Entonces:
1
𝑠1
+
1
𝑠9
=
1
𝑓
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Figure 5.63  Finite imagery with spherical mirrors.

Figure 5.64  (a) Reflection from a concave mirror. (b) Reflection from a 
convex mirror.
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TABLE 5.5  Images of Real Objects Formed by  
Spherical Mirrors

Concave

Object Image

Location Type Location Orientation Relative Size

∞ 7 so 7 2ƒ Real ƒ 6 si 6 2ƒ Inverted Minified

so = 2ƒ Real si = 2f  Inverted Same size

ƒ 6 so 6 2ƒ Real ∞ 7 si 7 2ƒ Inverted Magnified

so = ƒ  ± ∞
so 6 ƒ Virtual 0 si 0 7 so  Erect Magnified

Convex

Object Image

Location Type Location Orientation Relative Size

Anywhere Virtual 0 si 0 6 0 ƒ 0 , Erect Minified

  so 7 0 si 0

TABLE 5.4  Sign Convention for Spherical Mirrors

Quantity Sign

 +  −
so  Left of V, real object Right of V, virtual object

si Left of V, real image Right of V, virtual image

ƒ Concave mirror Convex mirror

R C right of V, convex C left of V, concave

yo  Above axis, erect object Below axis, inverted object

yi Above axis, erect image Below axis, inverted image

The properties summarized in Table 5.5 and depicted in  
Fig. 5.65 can easily be verified empirically. If you don’t have a 
spherical mirror at hand, a fairly crude but functional one can be 
made by carefully shaping aluminum foil over a spherical form, 
such as the end of a lightbulb (in that particular case R and 
therefore ƒ will be small). A rather nice qualitative experiment 
involves examining the image of some small object formed by 
a short-focal-length concave mirror. As you move it toward the 
mirror from beyond a distance of 2ƒ = R, the image will gradu-
ally increase, until at so = 2ƒ it will appear inverted and life-
size. Bringing it closer will cause the image to increase even 
more, until it fills the entire mirror with an unrecognizable blur. 
As so  becomes smaller, the now erect, magnified image will 
continue to decrease until the object finally rests on the mirror, 
where the image is again life-size. If you are not moved by  
all of this to jump up and make a mirror, you might try examin-
ing the image formed by a shiny spoon—either side will be  
interesting.
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mirror from beyond a distance of 2ƒ = R, the image will gradu-
ally increase, until at so = 2ƒ it will appear inverted and life-
size. Bringing it closer will cause the image to increase even 
more, until it fills the entire mirror with an unrecognizable blur. 
As so  becomes smaller, the now erect, magnified image will 
continue to decrease until the object finally rests on the mirror, 
where the image is again life-size. If you are not moved by  
all of this to jump up and make a mirror, you might try examin-
ing the image formed by a shiny spoon—either side will be  
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