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We present a discussion about the “instantaneassoéxotation” as an adequate origin
of momenta in the equation of evolution of the dagmomentum, a subject that usually
is ill interpreted at the undergraduate level. Esenple examples are presented that can
contribute to a better understanding of the topic.

PACS: 45.40.-f, 45.50.-j

. INTRODUCTION

In the discussion about the angular momentﬁ(gn of a system of particles in
Elementary Mechanics, a subject that always desesecial attention is the choice of an
adequate origin of momentdn particular, the equation of evolution Bg has different

forms, according to this choice. We have observed in many textbooks*>¢ this

subject is not dealt with in a complete way andiladiscussion is avoided, perhaps in
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order to present it at a more elementary level. él@x, we observe that this “simplified”

treatment of the topic may lead, in general, to esanisinterpretations, by most students
in undergraduate courses. In particular, the coregoation of motion oﬂ:o in rigid

body dynamics taking the “instantaneous axis dtron” (IAR) as origin is a subject that
must be considered with care, as a superficialyaisatan lead to erroneous conclusions.
We present here a discussion, based on two simplaes, that, we believe sheds some

clarity about this particular subject.

Equation of evolution of the angular momentum

The angular momentum of a system of N particlesiabn origin O is expressed
as:

- N _
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where r;is the position of mass, p; is its linear momentum ang, is the position of

point O, all of them relative to the reference fearAssuming that point O is moving with

velocity v, (), we can derive an equation of evolution for thguaar momentum:O:
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In this last expressionj x p, =0 and;)t' =F™+Y F; , where R is the resultant of
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external forces acting an and )’ IEU- is the sum of internal forces on particlelue to the
j#i
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rest of the particles. It is easy to see thafr, —1,) x3.F; =0, if internal forces are
i=1 i#i

collinear with the relative position of each pdiparticles. Therefore:
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and thus, the time rate of change of the angulanembum about a certain moving origin

O of a system of particles is:

d(lj_,? = IQlo = Vo (t) x ISCM ()

where NO stands for the sum of all external torques aabimghe system about the same

point as I:O, Vo(t) is the linear velocity of the origin O anébM is the linear

momentum of the system.

Eq. 4 is reduced to the well-known form:
— Lo =Ng (5)

in particular cases, i.e., if and only if the onidD is chosen as a) a fixed point in space,
b) the center of mass (CM) of the system, or opiatpn space that moves relative to the

reference frame, with its velocity, t parallel to the linear momentum of the system,

P-y - The particular case of a point lying down on tA& of a rigid body chosen as

origin of momenta is considered now in detail.

II. THREE EXAMPLES

1) A particular case, which is explained in most eletagy courses of Mechanics is that
of a rigid cylinder which rolls down an inclinedaple without sliding. In this case, it is
usual to refer the equation of evolution of thedagmomentum to a) the CM of the
body or b) a point lying down on the instantaneaxs of rotation (IAR). In both cases,
the dynamic equation considered is Eq. 5, witht¢ingue of the unknown static frictional
force in the former, and the torque of the (knowe)ght force in the latter. However, the

reason of the validity of this equation for casasbin general not given explicitly. This



fact could lead to the conclusion (and most texitlsamverlook this discussion) that Eq. 5
is also valid if the origin O is a point on the I1AR any other situation. Let’s analyze two
possible interpretations for a general situation:

(i) The equation of evolution Eq. 5 holds choosaizgorigin a point O lying on the IAR,
becausei, = 0: the origin O is instantly at rest.
(i) The equation of evolution, Eq. 5, does notchiol general if O is on the IAR, ag, t ()

in EqQ. 4 is the velocity of thpoint of spacénot the material point of the system) taken as
origin of momenta, and its velocity is not null,tire general case, although the velocity
of the material point on the IAR is zero at evarstant.

As it will be seen, the correct answer is intetatien (ii). A second example will
illustrate this conclusion.
2) Let’s consider the movement of a particle of mas® the end of a light rope, which
is winding around a fixed cylinder. Consider th#itthe movement is contained in a
frictionless horizontal plane (Figure 1). Point€Xthe point of contact between the string
and the cylinder. As the cylinder is at rest anel $kring does not slip, point Q on the
string has the same velocity as the contact painthe cylinder, that is, a zero velocity.
Then, the movement of mass can be considered as an instantaneous circulaomot
with center in point Q (which is changing with timand the (changing) string length
is the curvature radius of the motion. Therefohe, AR passes through point Q.

Fl

Hence, the tensiof in the rope is always perpendicular to the velogitf the mass and

the (kinetic) energy of the mass is conserved. dibee, it is concluded that the speed

\\7\ is constant. Let’'s consider now the problem analyzhe angular momentum of the



mass. Taking as origin the fixed point O in Fig.the equation of evolution of the
angular momentum is Eq. 5, which results:
d('j‘f =Ny =-RTZ (6)

where the torque is clearly not null. If now thégor of momentum is taken as point Q,

the torque about this point on the IAR is null. mhié Eq. 5 was correct, it could be

concluded thaM is not constant! In fact:

Vz= 1z 7)

whereL is a constant. A8 changes with time, the\ﬁ\ = %nr' would change with time
too. The mistake is due to interpretation (i). As/as already mentioned, in the general
equation of evolution of the angular momentum, £qv, (t) is the velocity of the point

in space chosen as origin (following interpretat{n)), and it is not the velocity of the
material points which lie, in each instant, on AR (interpretation (i)). Then, the correct

equation of evolution of the angular momentum waitigin in Q is:

dL ~ R
9 =00 %Py ®
t
which leads to the same result as the energy ogaitgmn equation. This is easily seen
taking into account that the rhs of Eq. 8 is

and its lhs is:



dL. V) - ' ~ 5
o _d(mrv),_ I, dr .avis_ Wo Vi (10)
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Therefore, Eq. 8 also Ieads%%/ =0

In the case of the rolling body, the equation wbletion to be considered by
choosing an origin lying down on the IAR is Eq.b&cause the chosen point in space

moves following a trajectory that is congruenthe trajectory of the CM of the system.
That is, the additional term in Eq. 4 is zero ifstbase, asiy t(i$ parallel to |5CM at

every instant. Example 2, on the other hand, isrg simple situation in which the IAR
and the CM follow different trajectories, thus aliog a clarifying discussion of the
general case. This particular example was choseaue of its simplicity and, in fact, it
involves the movement of a single point particlewc® the correct way of handling this
kind of situation is established, it is not difficto find other examples.
3) Consider, for instance, an inhomogeneous cylindat tolls without sliding on a
horizontal plane (Figure 2). The center of mass YAkt at a point a distanakapart
from the central axis of the cylinder. As in thesfiexample, the IAR of the cylinder
passes through the point of contact O with theaserf The CM rotates around the center
axis of the cylinder, describing a cycloid. Therefopoints O and CM describe very
different trajectories.

The equation of motion (EOM) of the system can é&dily obtained from the
conservation of energy, taking into account tha mhovement of the cylinder can be

considered, instantaneously, as a pure rotatiaomarthe IAR passing through point O:

E= ; |o(e)(3?)2 + mgdsird (11)



where 1,(0)is the moment of inertia of the cylinder with respé the axis passing

through O. It is a function & because it takes different values depending opalséion

of the CM. AsL, = Io(e)(cdl?) , the conserved ener@ycan be written as:

2

L
E=—"C_ +maqdsi® 12
214(6) g (12)

The EOM can be obtained in terms lof = Io(e)(z?), by taking the time derivative in

Eq. 12. It is obtained:

2
0= o dlo _ I;O dio (6) +mgd0059@ (13)
15(8) dt 212(9) dt dt

Rearrangement of terms yields:

dil'o = -mgdcosb +1M@
dt 2 dt dt

(14)
It is clearly seen that the time rate of change®tioes not depend only on the torque of
the applied forces (first term in the rhs of Eq),3ut there is an additional term. It can

be proven that this term has the form required pyZi.e.:

do -

-V (t) % I5CM = —(—Ra X) X (—mdsireccjj? X +md cose‘;? y) = decose(Z?)zi(lS)

In fact, it is found:
lo =lgy + M(R? +d? + 2Rdsird) (16)
Taking into account tha?lo%t =0, Eqg. 14 can be re-expressed as:

1dlo(6) 00
2 dt dt

= decose(Z?)2 (7)



which is exactly the result in Eq. 15. It is themef proven that the second term in the

EOM of Lo in Eqg. 14 accounts for the “inertial” termvg (t) x I5CM of Eq. 4.

[11. CONCLUSIONS

The subject of obtaining the correct answers ferdarrect reasons is certainly a
fundamental one in elementary physics courses.his work we have shown the

importance of clarifying explicitly the meaning @f (t) as the time rate of change of the

position of the origin of momenta in Eq. 4. Theethexamples presented here show the
kinds of confusion that can arise if this veloasyincorrectly interpreted as that of the
material point of the rigid body occupying suchipos, when the IAR is taken as origin
of momenta. Unexpectedly, this misinterpretatioadke to the correct results in many
textbook situations. We have shown that this isydhk case when the IAR and the
center of mass of the system follow parallel trejges. We have also shown the correct
way of handling the problem by considering two demgituations in which this is not the

case.



Figure 1: A particle of mass m at the end of atlighrd, winding around a fixed cylinder.

All the movement is in a frictionless horizontahpé.
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Figure 2: An inhomogeneous cylinder rolling withaliting on a horizontal plane.
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