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A DYNAMICAL EXPLANATION OF THE FALLING 
CAT PHENOMENON* 

T. R. KANE and M. P. SCHER 

Department of Applied Mechanics. Stanford University, California 

IT is well known that falling cats usually land on their feet and, moreover, that they can 
manage to do so even if released from complete rest while upside-down. This phenomenon 
has given rise to questions of Dynamics as well as Physiology, and these have received 
attention in the literature of both fields [1-7]. In particular, numerous attempts have been 
made to discover a relatively simple mechanical system whose motion, when proceeding 
in accordance with the laws of Dynamics, possesses the salient features of the motion of 
the falling cat. The present paper constitutes such an attempt. 

The phrase "salient features of the motion" requires elaboration, for its meaning is 
crucial to the determination of the extent to which a given theory can be regarded as 
successful. In order to be explicit on this point, we propose the following list of features 
(see Fig. 1): 

(I) The torso of the cat bends, but does not twist. 
(II) At the instant of release, the spine is bent forward. Subsequent to this instant, the 

spine is bent first to one side, then backward, then to the other side, and finally forward 
again, at which point the cat has turned over and the spine has the same shape as at the 
initial instant. 

(III) The backward bend that occurs during the maneuver is far less pronounced than 
the initial and terminal forward bend. 

Rademaker and Ter Braak [4J proposed a model capable of performing motions 
compatible with (I) and (II), but requiring equal backward and forward bending, and thus 
necessarily in conflict with (III). The present model accommodates all three requirements. 
Not surprisingly, this improvement can be obtained only at the expense of simplicity. 

The system to be analyzed comprises two rigid bodies, A and B, which have one com­
mon point, O. To discuss the manner in which A and B move relative to each other, we 
introduce the following (see Fig. 2): 

AI' A 2 , A3 mutually perpendicular rays fixed in A and emanating from point 0 
K a ray lying in the plane determined by AI and A2 
B I a ray fixed in body B 
B2 a ray perpendicular to BI and lying in the plane determined by BI and K (and not fixed in body B) 
B3 a ray perpendicular to both BI and B2 
N a ray perpendicular to both A I and B I 
ex the angle between A I and K 
fJ the angle between B I and K 
}' the angle between A I and B I 
(J the angle between A3 and 8 3 

* This investigation was supported, in part, by NASA Research Grant NGR-05-020-209. 
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FIG. 2. Rays and angles. 

a; a unit vector parallel to A; 
b; a unit vector parallel to B; 
k a unit vector parallel to K 
D a unit vector parallel to N 

A and B represent the front and rear halves of the cat, and Al and Bl reflect the 
orientation of the spine. If A2 is regarded as defining the ventral direction, forward or 
backward bending then takes place whenever Bl lies in the A 1-A2 plane, forward bending 
occurring when the angle between Bl and A2 is smaller than 90°, and backward bending 
when this angle is larger than 90°. 

We now impose a requirement intended to reflect (I), that is, to eliminate twisting. 
To this end, we introduce a reference frame Q (see Fig. 3) in which N and the bisector of 
the angle between .41 and Bl are fixed, and note that Qro

A and Qro
B

, the angular velocities 
of A and B in Q, can be expressed as 

(1) 

and 

(2) 

where u and v are scalars that can be interpreted as "turning rates" of A and B in Q. 
Twisting is then prevented by setting 

v=u (3) 

Next, with (II) in mind, we stipulate that IX and {3 remain constant. This means that Bl 
is constrained to move on the surface of a right-circular cone of semi-vertex angle {3, 



A dynamical explanation of the falling cat phenomenon 665 

Q 

B, 

A, 

a\ 
N 

FIG. 3. Reference frame Q. 

whose axis, K, is fixed in body A; and motions involving precisely the sequence of bending 
deformations of the spine described in (II) can now be generated in the following simple 
way: Taking f3 > oc, let BI revolve once in A about K or, equivalently, vary () monotonically 
from zero to 2n radians. 

Finally, we let the inertial orientation of the bisector of the angle between Al and BI 
remain unaltered throughout the motion. It follows that roQ, the inertial angular velocity 
of Q, can be expressed as 

(4) 

where .jJ is the time-derivative of an angle If; and M denotes the reciprocal of the magnitude 
of the vector a l + b l . Furthermore, the term "overturning" can now be given a precise 
meaning: If If; is chosen in such a way that ljI = ° initially, then overturning has occurred 
when ljI = ± n if A and B each have the same orientation in Q at these two instants. A 
motion thus conforms to (II) in all respects if () varies monotonically from zero to 2n, 
If; = ° when () = 0, and ljI = ± n when () = 2n. 

As regards (III), all that can be said for the moment is that the backward bend associated 
with a motion of the kind just described is less pronounced than the forward bend, provided 
oc > 0, for the former is measured by f3 - oc and the latter by f3 + oc. 

As will be shown later, motions that satisfy all of the above requirements proceed in 
accordance with the laws of Dynamics if A I and B I are centroidal principal axes of inertia 
of A and B, respectively; the inertia ellipsoids of A and B are spheroids whose axes of 
symmetry are A I and B I; the two bodies are identical; and ljI satisfies the differential 
equation 

dljl (JjI)S 

d() (T-l)[l- T+(JjI)(l + T)J(1 + T)t 
(5) 
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where I and J denote the transverse and the axial moment of inertia of either body and 
Sand T are given by 

S = - .J2(cos rx. sin [3 + sin rx. cos [3 cos e) sin [3 

T = cos rx. cos [3 - sin rx. sin [3 cos e. 
(6) 

(7) 

To study overturning by reference to equation (5), one may take 1/1(0) = 0 and then 
determine 1/I(2n) by integrating the equation. This becomes particularly easy if rx. = 0, 
for one can then obtain a solution in closed form; and if 1/I(2n) is set equal to n, this solution 
yields the relationship 

2.J2(J 11)(1 + cos [3)l = 1 - cos [3 + (J I 1)(1 + cos [3) (8) 

which is, essentially, a result obtained by Rademaker and Ter Braak [4]. It implies not 
only equal forward and backward bending, which conflicts with (III), but also a rather 
large amount of such bending, for with JII = 0'25, which is a realistic value,* equation (8) 
leads to a value of nearly 60° for [3. It would appear, therefore, that zero is an unsatisfactory 
value for rx.. 

Given J II, one can proceed as follows to find pairs of values of rx. and [3 that permit 
overturning: Assign small values to rx. and [3, and integrate equation (5) numerically in 
the interval 0 :::::; e :::::; 2n. If 1/I(2n) is not equal to ± n, increase [3 and integrate again, 
repeating this process until either a satisfactory value of [3 has been found or [3 has become 
so large as to be unacceptable on physical grounds; then increase rx. and begin a new 
search for [3. 

By performing such calculations with JII = 0·2 and JII = 0'3, one finds that over­
turning cannot occur unless there is some back bending, that is, unless [3 < rx.. Figure 4 
shows the result of our computations in the form of Forward Bend vs. Backbend plots 
for back bends up to 25°, which we regard as an upper limit from a physical point of view. 
These plots prove that the present theory accommodates (III). One may conclude, there­
fore, that this theory explains the phenomenon under consideration. 

While the mechanical system which we have proposed is a rather simple one, the 
description of its motion, involving, in part, the solution of a nonlinear differential equation, 
is sufficiently complex to render visualization of the motion difficult. This difficulty can 
be overcome by drawing perspective pictures of bodies A and B for a number of instants 
during the motion. Representing A and B each as a right-circular cylinder, and indicating 
by means of two small crosses on each cylinder the points where one may imagine the legs 
of a cat to be attached to the torso, we have employed a computer-driven plottert to create 
such pictures. For JII = 0'25, forward bending of 116°, and backbending of 25°, these 
values being estimates based on Fig. 1, the results appear as shown in Fig. 5. In Fig. 6, the 
same drawings have been superimposed on the photographs shown in Fig. 1. 

We now return to the task deferred earlier, that of deriving equations (5}-(7) from a 
dynamical principle. To this end, we first define wt and wf as 

(9) 

* To determine JII, measurements were performed. with the assistance of Dr. James Robinson of the NASA 
Ames Research Center. on fourteen segments of a dead cat. 

t We gratefully acknowledge the aid of Mr. Mark Nelson and of the Computation Center of Stanford 
University in writing the plotting program. 



FIG. 1. Falling cat (Ralph Crane-Life magazine). 
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F!G. 6. Computer-drawn pictures overlaid on photographs of falling cat. 
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where roA and roB denote the inertial angular velocities of A and B. The fact that the angular 
momentum of the system relative to the mass center of the system must be equal to zero 
at all times (because it is initially equal to zero by hypothesis) can then be expressed as 

Jw1a l + Iw1a2 +Iw1a3 + Jwfbl +Iw~b2 +Iw~b3 = 0 

and scalar multiplication of this equation with a l + bl yields 

(JII)(w1 +wf)(l + Tll )+w1T21 +W1T31 +W~T12 +W~T13 = 0 

where 7;j is defined as 
7;j = a i · bj . 

Next, we seek to express wI andwf as functions of a, [3, e, (j, and !jJ. 
Noting that* 

and 

roA = roQ+QroA = !jJM(al +bl)+ua l -(yI2)n 

(1,4) 

roB = roQ +QroB = !jJM(al +bl)+ub l + (y/2)n 

(2,3,4) 

we find by substitution into equations (9) and with the aid of (12) that 

w1 = !jJM(1 + Tll)+u 

w1 = !jJMT21 -(YI2)n. a2 

w1 = !jJMT31 -(YI2)n. a 3 

wf = !jJM(1 + Tll)+u 

w~ = !jJMT12 + (y/2)n . b2 

w~ = !jJMT13 + (YI2)n. b 3 · 

The unit vector n (see Fig. 2) can be expressed as 

n = at xbt/sin 'Y 

and it follows that 
n. a2 = -a3· bt/sin 'Y = - T3t/sin 'Y 

n. a3 = T2t!sin 'Y 

n. b2 = Tl3/sin 'Y 

n. b3 = - T12/sin 'Y. 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

Of the nine quantities 7;j' only three are required III the sequel. By reference to 
equation (12) and Fig. 2, these can be expressed as 

Til = cos a cos [3 - sin a sin [3 cos e 
T12 = - cos a cos [3 - sin a cos [3 cos e 
T13 = sin a sin e. 

* Numbers beneath equal signs are intended to direct attention to corresponding equations. 

(26) 

(27) 

(28) 
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An expression of y, suitable for later use, can now be constructed by noting that 

(12) 

so that differentiation with respect to time yields 

(26,28) 
or 

y = -8T13 sin/3/siny (29) 

The quantity u that appears in equations (15) and (18) can be expressed as 

(30) 

This is shown as follows: Aro
B

, the angular velocity of B in a reference frame rigidly attached 
to A, is given both by 

(31) 

(1,2,3) 
and by 

(32) 

where P designates a reference frame in which B1 and K are fixed. Furthermore, the 
definition of f) is such that 

And P roB must be parallel to b l , so that 

where s is some scalar. Hence 

(33) 

(32) 

Equating the right-hand members of equations (31) and (33), dot-multiplying the resulting 
equation with b2 , and solving for u, one thus finds that 

and use of equations (24), (29) and (12), together with the relationship k . b2 = - sin /3, 
then leads to equation (30). 
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Substitution from equations (22}-(25), (29) and (30) into equations (15}-(20) gives 

wt = t/I M(1 + Tll )+ OT12 sin fJ/(1- Til) 
A' • . 2 W2 = t/lMT21-8T13T31smfJ/2(1-Tll) 

w1 = t/lMT31 +BT31 T21 sin fJ/2(1- Til) 

wf = t/lM(1 + Tll )+OT12 sin fJ/(1 - Tid 
w~ = t/lMT12 - OT13 T13 sin fJ/2(1- Ti 1) 
B' " . 2 W3 = t/lMT13 - UT13 T12 sm fJ/2(1- Tll)' 

The quantity M that appears in these equations was defined as the reciprocal of the 
magnitude of the vector a 1 + b l' Hence 

M = [(al +b1f]-t = [2(1 + Tll)r t . 

(12) 

Use of the last seven equations permits one to replace equation (11) with 

dt/l .J2(J/I)T12 sin fJ 
d8 (Tll -1)[1- Tll + (J/I)(1 + Tll)](l + Tll)t 

and, if Sand T are defined as 

S = .J2T12 sin fJ 

and 

(34) 

(35) 

(36) 

then equation (34) reduces to equation (5) and substitution from equations (27) and (26) 
into equations (35) and (36) leads directly to equations (6) and (7), which completes the 
derivation. 
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