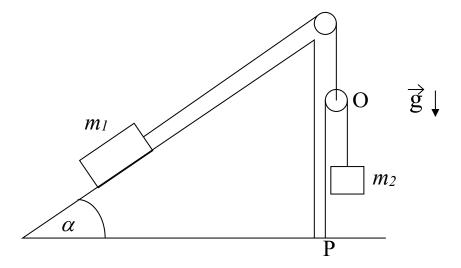

INTERACCIÓN DE ROZAMIENTO

1 - Un cuerpo de masa m_1 se apoya sobre otro de masa m_2 como indica la figura. El coeficiente de rozamiento estático entre ambos es μ_e . No hay rozamiento entre la mesa y el cuerpo 2.



- a) ¿Cuál es la fuerza máxima aplicada sobre el cuerpo 1 que acelera a ambos cuerpos, sin que deslice uno respecto del otro?
- b) ¿Cuál es la aceleración del sistema?
- c) Repita los puntos a) y b) si se aplica la fuerza sobre el cuerpo 2.
- d) Se aplica ahora sobre la masa 2 una fuerza el doble de la calculada en c). ¿Cuál es la aceleración de m_1 y m_2 si el coeficiente de rozamiento dinámico es μ_d ?
- e) Si la dimensión del cuerpo 2 es L y la del cuerpo 1 es l << L, ¿cuánto tardará en caerse si inicialmente estaba apoyada m_1 en el centro de m_2 ?
- 2 Sea el sistema de la figura donde $\mu_d = 0.25$, $\mu_e = 0.3$:

- a) Inicialmente se traba el sistema de modo que esté en reposo. Cuando se lo destraba, diga qué relaciones se deben cumplir entre las masas y los ángulos para que queden en reposo.
- b) Si $m_1 = 1$ kg, $m_2 = 2$ kg, $\alpha = 60^{\circ}$ y $\beta = 30^{\circ}$, ¿se pondrá en movimiento el sistema?
- c) Suponga ahora que inicialmente se le da al sistema cierta velocidad inicial y que los datos son los dados en (b). Encuentre la aceleración y describa cómo será el movimiento del sistema teniendo en cuenta los dos sentidos posibles de dicha velocidad.
- 3 Considere dos partículas de masas m_1 y m_2 y dos poleas de masa despreciable dispuestas como en la figura. La partícula m_1 está sobre un plano (fijo al piso) inclinado un ángulo α siendo respectivamente μ_e y μ_d los coeficientes de rozamiento estático y dinámico entre la

partícula m_1 y el plano. Los hilos (1) y (2) son inextensibles y de masa despreciable y el hilo (2) está atado al piso en el punto P.

- a) Dibuje m_1 , m_2 y las poleas por separado e indique las fuerzas que actúan sobre cada uno. Plantee las ecuaciones de Newton y de vínculo.
- b) Halle la aceleración de m_1 en función de la aceleración de m_2 . ¿Influye en su resultado el hecho que los hilos sean inextensibles?
- c) Si el sistema se halla en reposo encuentre dentro de qué rango de valores debe estar m_2 .
- d) Si m_2 desciende con aceleración constante A:
 - i) Calcule m_2 . Diga justificando su respuesta si la aceleración A puede ser tal que A > g.
 - ii) Exprese la posición de la polea O en función del tiempo y de datos si en el instante inicial estaba a distancia h del piso con velocidad nula. ¿La polea se acerca o se aleja del piso?