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1360 NOTES AND

Motion of a Harmonic Oscillator with
Sliding Friction

I. Ricaarp Laripus

Department of Physics, Stevens Institute of Technology,
Hoboken, New Jersey 07030

(Received 29 December 1969;
revision received 4 May 1970)

Elementary mechanics courses usually discuss the
motion of a harmonic oseillator with viscous friction. A
variation of this problem with some amusing aspects
is the problem of a harmonic oscillator acted on by
sliding friction. This situation is actually more familiar
to students and can readily be presented in a laboratory
program. While the solution of this problem is straight-
forward, it does offer a challenge to students in an
introductory course and may serve as a pedagogically
useful spetial assignment.

The problem may be stated as follows: A block of
mass m is attached to a spring with elastic constant %
for both extension and compression and moves on a
horizontal surface with a coefficient of friction u. If
the block is initially at a displacement z; from the

equilibrium position and released from rest, find the

position where the block ultimately comes to rest.
Assume that the coefficients of static friction and
sliding friction are equal.

The equation of motion for the system is

™

where the == sign is used so that the friction force is
opposite to the direction of the velocity of the block.

mi=—kxd=umg,
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Fia. 1. Plot of the values of z, versus «.

DISCUSSIONS

-1.0

a l=0.0
0.50
t/7

0.25 0.75 1.00

F1a. 2. Displacement of the oscillator as a function of time
for several values of «.

We define the “critical” displacement
@)

where the restoring force of the spring is equal in
magnitude to the friction force.

During the first half-cycle of the motion, the loss of
potential energy is equal to the work done against
friction,

we= (wmg/ko)zo= oo,

Lk — Lhat= umg (wo— 1), @)
where z; is the displacement after one half-cycle.
Thus we have
2= —x0+2azo. “)
Similarly, after each half-cycle
Tj=—Tj3 ("— 1 )j20£.’120 (5)
or ]
zj= (—1)7(1—2aj)z0. (6)

The block comes to rest permanently at z=z, when

[ 2a | <2e<| 2 |. @)
Substituting into Eq. (6), we obtain
(1—a)/20<n< (1+a)/ 2. 8)

Thus, the final position may be obtained directly
from Eqgs. (6) and (8). A graphical representation of
our solution is given in Fig. 1, where z, is plotted as a
funection of a.



NOTES AND DIBCUSBSIONS
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Fra. 8. Complete motion of the oscillator for « =0.05.

From Eq. (8) and Fig, 1 we note that the damping of
the oscillatory motion is determined by the magnitude
of a. If a>1 (ie., the initial displacement is smaller
than the critical displacement) no motion takes place.
If $<a <1 the oscillator comes to rest without reversing
its motion. If $ La< % the oscillator stops after reversing
its motion once, For small values of  the number of
oscillations becomes large, and the oscillator ultimately
comes to rest close to the origin.

The complete solution of Eq. (1) may be obtained
directly. Let 2 be the displacement during the jth
half-cycle. Then the motion is given by

D =go{[1— (2j— )a] cos (wi)— (—1)%}, ®)

where w= (k/m)¥*=2x/T and T is the period of the
motion.

A plot of Eq. (9) for i<T is given in Fig. 2 for
several values of a. We note that the limit a—0 cor-
responds to undamped simple harmonic motion.

The displacement lies within a pair of straight lines
with slopes =-4az,/T. (This is to be compared with
the exponential envelopes in the case of viscous frie-
tion.) In order to illustrate this result we have plotted
in Fig. 3 the complete motion of the oscillator for
a=0.05.

Since the period of oscillation is independent of the
amplitude, the time elapsed during the complete motion
is determined by the number of oscillations which
take place. Thus if I<a<l, i=T/4; if i<a<i,
t=T/2; and in general if 1/ (n+1)<a<1/n, t=nT/4.

It is also of interest to examine the total energy loss
of the system during the motion. The total distance
traveled by the block is given by

n—1
sn=2zpt 212]xj!+lxni- (10)
=
From Eq. (6) we obtain
8 =2n (1—an)x,. (11

Let the initial energy be Ey=3kz®. Then the frac-
tional energy loss is

AR/ Bo= (umgs,)/ Skxo?) = 2as,/ 20

== 4o (1—amn). (12)
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As a check, we note that
AE/ By= (3kag— k)] (Bhwo’)
=1—z2/ 2= 1— (1—2an)?
=4an (1—an).

A more complicated version of this problem may be
presented by noting that the coefficient of static friction
is not actually equal to the coefficient of sliding friction.
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In elementary mechanics courses the motion of a
rocket is a commonly discussed illustration of con-
servation of momentum and provides an excellent
application of Newton’s second law in the general form
F=dp/dt.

In the absence of external forces the veloecity of the
rocket as a function of its (variable) mass is obtained
directly by integrating

mdv/ di=vodm/ dt a)
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Fia. 1. Plots of v, versus m for several values of n, where
m=me—np and me=initial mass of rocket and fuel,
p=mass of each pulse of fuel ejected, n =total number of
pulses, v, =rocket velocity after n pulses of fuel have been
ejected.



