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The quadratically damped oscillator: A case study of a non-linear
equation of motion

B. R. Smith, Jr.a)

United States Naval Academy, Department of Physics, Annapolis, Maryland 21402

(Received 21 November 2011; accepted 31 May 2012)

The equation of motion for a quadratically damped oscillator, where the damping is proportional to

the square of the velocity, is a non-linear second-order differential equation. Non-linear equations

of motion such as this are seldom addressed in intermediate instruction in classical dynamics;

this one is problematic because it cannot be solved in terms of elementary functions. Like all

second-order ordinary differential equations, it has a corresponding first-order partial differential

equation, whose independent solutions constitute the constants of the motion. These constants

readily provide an approximate solution correct to first order in the damping constant. They also

reveal that the quadratically damped oscillator is never critically damped or overdamped, and that

to first order in the damping constant the oscillation frequency is identical to the natural frequency.

The technique described has close ties to standard tools such as integral curves in phase space and

phase portraits. VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4729440]

I. INTRODUCTION

Newton’s second law reduces the science of mechanics to
the solution of second-order ordinary differential equations.
Constants of the motion, where they can be found, provide
important insight into the solution of the equations of motion
of a physical system. They also elevate the science of
mechanics above a purely mathematical exercise by facilitat-
ing (if not actually constituting) our physical understanding
of the system. Kepler’s law of areas was perhaps the first
constant of the motion to be discovered, later to be recog-
nized as an example of the conservation of angular momen-
tum. Huygens implicitly used conservation of linear
momentum in his debate with Leibniz over the true measure
of the “quantity of motion.” The work-energy theorem
applied to conservative forces evolved into the conservation
of energy, a law that reaches far beyond its purely mechani-
cal origins. Techniques for finding constants of the motion
for a physical system are valuable tools in theoretical
physics: think of the importance of cyclic or ignorable coor-
dinates in Lagrangian and Hamiltonian fomulations, of
Noether’s theorem linking conserved quantities to symmetry
and invariance properties, and of the link between conserved
quantities and eigenvalues in quantum mechanics.

These seminal constants and conservation principles are
core to the discipline of theoretical physics. A student just
acquiring an appreciation for their importance and utility
may unconsciously conclude that they are rare and excep-
tional. In actuality, any system of ordinary differential equa-
tions of any order can be expanded into a larger system of
first-order differential equations by identifying each deriva-
tive as a new variable; for example,

dxi

dt
¼ yi; (1a)

d2xi

dt2
¼ dyi

dt
: (1b)

The expanded system has an associated first-order partial dif-
ferential equation1

0 ¼ @S

@t
þ
X

i

@S

@qi

dqi

dt
; 1 � i � n; (2)

where the qiðtÞ include the original and all of the newly iden-
tified variables, and n is the total number of first-order ordi-
nary differential equations in the expanded system. There are
an infinite number of solutions, but only n independent solu-
tions. Once n independent solutions Siðqj; tÞ have been
found, they may be inverted to obtain qiðSj; tÞ. Among the
qiðSj; tÞ are the sought-after solutions to the original differen-
tial equations, complete with integration constants.

Newton’s second law for a single particle provides the
equations of motion

m€xi ¼ f iðxj; _xj; tÞ; i; j � 3: (3)

The expanded system of first-order ordinary differential
equations is

vi ¼ _xi; (4a)

m _vi ¼ mai ¼ f iðxj; vj; tÞ: (4b)

The velocities are now considered independent variables on
an equal par with the coordinates. Equation (2) becomes2

0 ¼ @S

@t
þ
X3

i¼1

@S

@xi
vi þ

X3

i¼1

@S

@vi
ai: (5)

Solutions of this first-order partial differential equation are
constants of the motion.

Reference 2 gives four examples, all important classroom
problems, where the solution of Eq. (5) can be obtained by el-
ementary means. In many other cases, finding a complete set
of independent solutions to Eq. (5) is harder than solving the
equations of motion themselves. However, even one solution
provides significant insight into the problem. Consider, for
example, that if all the forces are conservative, so that

ai ¼ � 1

m

@/
@xi

(6)
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for some /ðxiÞ, then Eq. (5) yields

0 ¼ @S

@t
þ
X3

i¼1

@S

@xi
vi � 1

m

X3

i¼1

@S

@vi

@/
@xi

; (7)

which has the immediate time-independent solution

S ¼ 1

2
m
X3

i¼1

vivi þ /: (8)

This is the well-known result that the motion proceeds in
such a way that the total mechanical energy is constant. In
this example, S is a time-independent scalar.

The nature of S varies. It may be a scalar, as in the exam-
ple of constant mechanical energy, or it may be a vector as
in the case of total angular momentum Li for central force
motion. If a scalar, it need not be energy or even something
resembling energy. Indeed, it may be something for which a
meaningful physical interpretation is hard to find. For the
strictly utilitarian purposes of solving the equations of
motion, the simplest possible expressions for S, of whatever
type, are preferred.

One-dimensional systems possess only two independent
constants of the motion. Restricting the discussion to forces
that are not explicitly a function of time, the equation of motion

m _v ¼ f ðx; vÞ (9)

can be multiplied by the identity

v ¼ _x (10)

to yield the Pfaffian form

mv dv ¼ f ðx; vÞ dx: (11)

All two-variable Pfaffian forms can be transformed into total
integrals by the use of an integrating factor3 l such that

0 ¼ dS ¼ mlv dv� lf ðx; vÞ dx: (12)

The integrating factor can be found from the integrability
condition

m
@ðlvÞ
@x
¼ � @ðlf Þ

@v
: (13)

Once the integrating factor is known, Eq. (12) can be inte-
grated to yield the first constant of the motion,

Sðx; vÞ ¼ Sðx0; v0Þ: (14)

The second independent constant of the motion must be ex-
plicitly a function of time

Tðx; v; tÞ ¼ Tðx0; v0; t0Þ; (15)

in order for the equation of motion to be found. Equations
(14) and (15) constitute two equations in the three independ-
ent variables x, v, and t. One equation may be used to elimi-
nate v in the other, yielding the equation of motion

x ¼ x
�

Sðx0; v0Þ; Tðx0; v0; t0Þ; t
�
: (16)

Finding T is, in principle, straightforward for one-
dimensional systems. Equation (5) is separable in t with a
solution of the form

Tðx; v; tÞ ¼ xtþ T̂ðx; vÞ; (17)

where

@T

@t
¼ x; (18a)

v
@T̂

@x
þ f

m

@T̂

@v
¼ �x: (18b)

Equation (10) can be solved to yield

t� t0 ¼
ðx

x0

dx

v
: (19)

While the constants of the motion treat x and v as independ-
ent variables, for one-dimensional motion they are linked
through Eq. (14). With v considered a function of x, Eq. (19)
can be integrated by parts to yield

t� t0 ¼
x

vðxÞ

����
x

x0

þ
ðx

x0

x

v2ðxÞ
dv

dx
dx; (20a)

¼ x

vðxÞ

����
x

x0

þ
ðx

x0

x

v2ðxÞ
dv=dt

dx=dt
dx; (20b)

¼ x

vðxÞ

����
x

x0

þ
ðx

x0

x

v2ðxÞ
a

v
dx; (20c)

¼ x

vðxÞ

����
x

x0

þ
ðx

x0

xf ðx; vÞ
mv3ðxÞ dx: (20d)

Repeatedly integrating by parts yields an infinite series on
the right-hand side,

t� t0 ¼
X1
n¼0

Fnðx; vÞ
1

v

� �n����
x

x0

; (21)

which, if questions of convergence can be adequately dealt
with, represents a function T̂ðx; vÞ � T̂ðx0; v0Þ that brings Eq.
(19) into the form

Tðx; v; tÞ ¼ xt� T̂ðx; vÞ ¼ xt0 � T̂ðx0; v0Þ: (22)

Alternatively, x can be regarded as a function of v, yielding
a second expression for T that can be found by writing
Eq. (19) as

t� t0 ¼
ðv

v0

dx

dv

dv

v
¼
ðv

v0

m dv

f ðx; vÞ: (23)

Repeated integration by parts again yields an infinite series,

t� t0 ¼
mv

f ðx; vÞ

����
v

v0

þ
ðv

v0

mv

f 2ðx; vÞ
df

dv
dv; (24a)

¼ mv

f ðx; vÞ

����
v

v0

þ
ðv

v0

mv

f 2ðx; vÞ
@f

@x

dx

dv
þ @f

@v

� �
dv;

(24b)
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¼ mv

f ðx; vÞ

����
v

v0

þ mv2

2

1

f 2ðx; vÞ
@f

@x

mv

f
þ @f

@v

� �����
v

v0

(24c)

�
ðv

v0

mv2

2

d

dv

1

f 2ðx; vÞ
@f

@x

mv

f
þ @f

@v

� �� �
dv: (24d)

If this infinite series convergences properly, then a second
representation for T(x,v;t) exists.

II. THE HARMONIC OSCILLATOR

The simple harmonic oscillator will be used to illustrate
the process. As the restoring force for the simple harmonic
oscillator,

m _v ¼ �mx2x; (25)

is conservative, Eq. (12) immediately yields the first constant,

S ¼ 1

2
mðv2 þ x2x2Þ ¼ 1

2
mðv2

0 þ x2x2
0Þ: (26)

Equation (19) becomes

t� t0 ¼
x

v

����
x

x0

þ
ðx

x0

x

v2ðxÞ
�x2x

v
dx; (27a)

¼ x

v

����
x

x0

� 1

3

x2x3

v3

����
x

x0

þ
ðx

x0

x4x4

v5
dx; (27b)

xðt� t0Þ ¼
xx

v

����
x

x0

� 1

3

x3x3

v3

����
x

x0

þ 1

5

x5x5

v5

����
x

x0

�…:

(27c)

The sequence converges for ðxx=vÞ2 < 1 to yield

Tðx; v; tÞ ¼ xt� tan�1 xx

v

� �
¼ xt0 � tan�1 xx0

v0

� �
:

(28)

This expression for T(x,v;t) can be used to immediately cal-
culate the period s, and therefore the frequency, of the oscil-
lator. At the two turning points of the motion, v¼ 0, and the
interval between them is

x
s
2

� �
¼ xðtþ � t�Þ ¼

p
2
� � p

2

� �
¼ p; (29)

so that the period of the motion is 2p=x, as expected for
the simple harmonic oscillator. In exactly the same way, Eq.
(24a) yields

Tðx; v; tÞ ¼ xtþ tan�1 v

xx

� �
¼ xt0 þ tan�1 v0

xx0

� �
:

(30)

It bears repeating that the constants of the motion are not
unique; the two expressions here for T(x,v;t) are related
through the trigonometric identity

tan�1z ¼ �p
2
� tan�1 1

z

� �
: (31)

It is left as an exercise for the reader to solve Eq. (26) for
v(x) and substitute this into either form of T(x,v;t) to obtain
the standard equation of motion for the simple harmonic
oscillator.

A similar analysis can be done for the linearly (viscously)
damped harmonic oscillator. The time-independent con-
stant4,5 is

S ¼ 1

2
m½ðvþ cxÞ2 þ x2x2�exp

2c
x

tan�1 xx

vþ cx

� �� �
:

(32)

The time-dependent constant is

Tðx; v; tÞ ¼ xt� tan�1 xx

vþ cx

� �
; (33)

where

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ c2

q
(34)

is the damped frequency and x0 is the undamped (natural)
frequency of the oscillator.

III. THE QUADRATICALLY DAMPED HARMONIC

OSCILLATOR

Both the simple and the viscously damped harmonic
oscillators can be adequately solved with conventional
approaches. The value to the student of the approach offered
here for those simple problems is more pedagogical than util-
itarian. The balance begins to shift toward the utilitarian for
the quadratically damped harmonic oscillator. For damping
proportional to v2, Newton’s second law takes the form

m€x ¼ �mx2x� mc _x2; _x > 0;
�mx2xþ mc _x2; _x < 0;



(35)

and the student is faced with two different non-linear differ-
ential equations. The damping coefficient must change sign
whenever v¼ 0 since the damping force always opposes the
velocity; for oscillatory motion, this happens every half-
cycle. As a consequence, each equation must be solved sepa-
rately and the solutions mated at the turning points to yield a
continuous solution valid for all t. Assuming that x has its
maximum displacement x0 at t¼ 0, the first turning point
xðT1Þ must be calculated from the v < 0 solution to Eq. (35)
and used as a boundary condition for the v > 0 solution.
Similarly, xðT2Þ must be calculated from the v > 0 solution
and used as a boundary condition for the next v < 0 solution,
and so on. The two differential equations are related through
a parity transformation: €xv<0 ¼ �€xv>0. Once the solution is
known for v < 0, the solution for v > 0 is obtained by simply
changing sign.

The brute-force approach to Eq. (35) is a power series

expansion xðtÞ ¼
X1

n¼0
antn. The expressions for an get

very complex very fast. While formally correct, this
approach fails to provide any significant physical insight into
the behavior of the quadratically damped oscillator. It does
not easily provide an expression for the damped frequency
of the oscillator in terms of the natural frequency, for exam-
ple, nor does it provide any convenient method of calculating
the displacements at the turning points.
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Instead, we approach the solution through the constants of
the motion. First, write Eq. (35) as two-variable Pfaffian forms

0 ¼ dA ¼ v dvþ ðx2x� cv2Þ dx; v < 0;
v dvþ ðx2xþ cv2Þ dx; v > 0:



(36)

These are not quadratures, as they do not obey the integrabil-
ity condition. The required integrating factors are found by
solving

@l
@x

v ¼ @l
@v
ðx2x� cv2Þ � 2cvl: (37)

The most general solutions are not necessary; the simplest

solutions5–7 l ¼ e�2cx suffice. Equation (36) becomes

l dA ¼ dS� ¼ ðe�2cxv dv� v2ce�2cx dxÞ þ e�2cxx2x dx;

(38a)

S� ¼ e�2cx v2

2
� x2

2c
x6

1

2c

� �� �
: (38b)

Note that S� and Sþ are related by a parity transformation:
S�ð�x;�vÞ ¼ Sþðx; vÞ.

The quantities S6, the first constants of the motion for this
problem, are each graphically illustrated over one-half cycle
in Fig. 1. The phase space axes are expressed in terms of the
unitless parameters

w ¼ cv
x
; (39a)

u ¼ cx: (39b)

The quantities S� normalize to

Ŝ
� ¼ c2

x2
S� ¼ e�2u w2

2
� u

2
� 1

4

� �
: (40)

The plot of constant Ŝ lays out the trajectory of the damped
oscillator in phase space. Since Ŝ

�
is a constant, its value

can be conveniently found by setting v¼ 0 in Eq. (40). The
condition Ŝ

�
< 0 holds for all positive values of u0 and

Ŝ
� ! 0 from below as u0 !1, limiting Ŝ

�
to the range

0 > Ŝ
� � � 1

4
: (41)

Starting from maximum displacement u0 where w¼ 0, the
trajectory will follow a path set by

Ŝ
� ¼ �e�2u0

u0

2
þ 1

4

� �
: (42)

The turning point at the end of this half-cycle is found by
iteratively solving

e�2u0ð2u0 þ 1Þ ¼ e�2u1ð2u1 þ 1Þ: (43)

A turning point implies that the velocity is zero, so that a
turning point at the origin u1 ¼ 0 means that the oscillator is
critically damped or overdamped. Equation (43) then
becomes

e�2u0ð2u0 þ 1Þ ¼ 1; (44)

which has no solution for u0 > 0; therefore, the quadrati-
cally damped oscillator is never critically damped or
overdamped.

The velocity at the first passage through u¼ 0 is

w ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2u0ð2u0 þ 1Þ

2

r
: (45)

The point of maximum velocity xf , i.e., the point where the
acceleration is zero, is found from Eq. (38b)

2cS�e2cx ¼ cv2 � x2x� x2

2c
; (46a)

¼ €x � x2

2c
; (46b)

uf ¼ u0 �
lnð2u0 þ 1Þ

2
: (46c)

At the first turning point, the expression for Ŝ changes from

Ŝ
�

to Ŝ
þ

. It is clear from Fig. 1 that if Ŝ
� ¼ Ŝ

þ
; Ŝ will not

be continuous across the u axis. This happens because the
solutions given in Eq. (38b) are only determined up to an

integration constant Ŝn. For the two expressions to match
smoothly and form a single function,

Ŝ
� ¼ �e�2u0

u0

2
þ 1

4

� �
¼ Ŝ

þ þ Ŝ1; (47)

where the value of the constant Ŝ
þ

must be

Ŝ
þ ¼ �e2u1

u1

2
� 1

4

� �
: (48)

Therefore, Ŝ1 is
Fig. 1. The functions Ŝ

�
and Ŝ

þ
when Ŝ

� ¼ Ŝ
þ

. The axes have been nor-

malized to u ¼ cx and w ¼ cv=x.
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Ŝ1 ¼ �e2u1
u1

2
� 1

4

� �
� e�2u0

u0

2
� 1

4

� �
: (49)

The result is shown in Fig. 2. Measuring the angle h clockwise
from the positive u axis, the function Ŝ for the first full cycle is

Ŝ ¼ �e�2u0
u0

2
þ 1

4

� �

¼
e�2u w2

2
� u

2
� 1

4

� �
; 0 � h < p;

e2u w2

2
þ u

2
� 1

4

� �
þ Ŝ1; p � h < 2p:

8>><
>>: (50)

The next turning point is found by interatively solving

Ŝ � Ŝ1 ¼ e2u2 ½2u2 � 1�: (51)

The new turning point u2 is fed back into Eq. (42) to
determine Ŝ

�
for the second cycle, and the process is

repeated. This process generates a sequence of integration
constants labeled Ŝn, where Ŝ0 ¼ 0, and n numbers the
half-cycles.

This kind of functional patch needs to be made at every
turning point. The general equations are

Ŝ � Ŝ2n ¼ e�2u2nþ1ð2u2nþ1 þ 1Þ ¼ e�2n2nð2n2n þ 1Þ; (52a)

Ŝ � Ŝ2nþ1 ¼ e2u2nþ2ð2u2nþ2 � 1Þ ¼ e2n2nþ1ð2n2nþ1 � 1Þ; (52b)

Ŝ ¼ �e�2u0
u0

2
þ 1

4

� �
¼

e�2u w2

2
� u

2
� 1

4

� �
þ Ŝ2n; 2np � h < ð2nþ 1Þp;

e2u w2

2
þ u

2
� 1

4

� �
þ Ŝ2nþ1; ð2nþ 1Þp � h < ð2nþ 2Þp:

8>><
>>: (52c)

The results for three full cycles are displayed in Table I.
Figure 3 shows three full cycles of the quadratically damped
oscillator in phase space. See Ref. 7 for a parallel, more
mathematically sophisticated, development of the material in
this section.

IV. THE SOLUTION OF THE EQUATION

OF MOTION

Equation (52c) leads directly to the equation of motion for
a given half-cycle, once the value of the corresponding

constant has been determined. Returning to the configuration
variables v and x, using

En ¼
x2

c2
ðŜ � ŜnÞ; (53)

then solving for v(x) and separating the variables, yields the
quadratureð

dt ¼
ð

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2cxEn þ

x2

2c
xþ 1

2c

� �s : (54)

The duration of the half-cycle is the transit time from one
turning point to the next,

s
2
¼
ðxmax

xmin

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2cxEn þ

x2

2c
xþ 1

2c

� �s : (55)

For a single half-cycle, x(t) is one-half of the periodic func-
tion y(t) obtained by performing the integration of Eq. (54).
The phase space picture of y(t) is shown in Fig. 4.

Fig. 2. One full cycle of the quadratically damped oscillator.

Table I. Ŝ ¼ �0:101501.

nth Half-cycle Ŝn�1 un�1

First 0 1

Second 0.098765 �0.41072

Third 0.123863 0.263568

Fourth 0.133834 �0.194566

Fifth 0.138780 0.154318

Sixth 0.141589 �0.127908
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The equation of the trajectory x(t) is not easily found; Eq. (54)
is not found in standard tables of integrals. Using Eq. (24a),

xðt� t0Þ ¼
ðv

v0

x dv

cv2 � x2x
; (56a)

¼ xv

cv2�x2x

����
v

v0

þ
ðv

v0

xv½2cvdv�x2 dx�
ðcv2�x2xÞ2

; (56b)

¼ xv

cv2 � x2x

����
v

v0

þ
ðv

v0

2cxv2 dv

ðcv2 � x2xÞ2

�
ðv

v0

x3v2 dv

ðcv2 � x2xÞ3
; (56c)

¼ xv

cv2 � x2x

����
v

v0

þ 2

3

cv
x

� � x2v2

ðcv2 � x2xÞ2

����
v

v0

� 1

3

x3v3

ðcv2 � x2xÞ3

����
v

v0

þ
ðv

v0

4

3

cv
x

� �3 x4

c2

� �
2cv dv� x2 dx

ðcv2 � x2xÞ3

�
ðv

v0

x3v3ð2cv dv� x2 dxÞ
ðcv2 � x2xÞ4

: (56d)

This suggests that T(x,v;t) may be written as

Tðx; v; tÞ ¼ xt�
X1
n¼1

fn
cv
x

� � xv

cv2 � x2x

� �n

: (57)

Substituting this into Eq. (5) yields

0 ¼ x� x
X1
n¼2

ðn� 1Þfn�1

xv

cv2 � x2x

� �n

� x
X1
n¼0

cv
x

� �
f
0

nþ1

xv

cv2 � x2x

� �n

� x
X1
n¼0

ðnþ 1Þfnþ1

xv
cv2 � x2x

� �n

þ 2x
cv
x

� �X1
n¼1

nfn
xv

cv2 � x2x

� �n

: (58)

Setting the coefficients of each order equal to zero yields this
set of equations

w ¼ cv
x
; (59a)

0 ¼ 1� f1 � wf 01; (59b)

0 ¼ wf 02 þ 2f2 � 2wf1; (59c)

0 ¼ ðn� 2Þfn�2 þ wf 0n þ nfn � 2wðn� 1Þfn�1;

0 ¼ ðn� 2Þwn�1fn�2 þ ðwnfnÞ0 � 2ðn� 1Þwnfn�1:

(59d)

These equations generate the following solutions:

f1 ¼ 1; (60a)

f2 ¼
2

3

cv
x

� �
; (60b)

f3 ¼
8

15

cv
x

� �2

� 1

3
; (60c)

f4 ¼
16

35

cv
x

� �3

� 2

3

cv
x

� �
; (60d)

f5 ¼
128

315

cv
x

� �4

� 104

105

cv
x

� �2

þ 1

5
; (60e)

f6 ¼
256

693

cv
x

� �5

� 176

135

cv
x

� �3

þ 2

3

cv
x

� �
; (60f)

Fig. 3. Three full cycles of the quadratically damped oscillator.

Fig. 4. The phase space plot of y(t).
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f7 ¼
1024

3003

cv
x

� �6

� 1856

1155

cv
x

� �4

þ 272

189

cv
x

� �2

� 1

7
;

(60g)

fn ¼
Xn�1

i¼0

Cn
i

cv
x

� �i
: (60h)

Equation (57) can be now be re-written as

Tðx; v; tÞ ¼ xt�
X1
i¼0

cv
x

� �i X1
n¼iþ1

Cn
i

xv

cv2 � x2x

� �n

:

(61)

From Eq. (59d),

Cn
i ¼

2ðn� 1Þ
nþ i

Cn�1
i�1 �

n� 2

nþ i
Cn�2

i ; (62a)

¼
Xn�iþ1

2

k¼1

2ð�1Þkðnþi�2kÞ!!ðn�2Þ!!ðnþ1�2kÞ
ðnþiÞ!!ðn�2kÞ!! Cnþ1�2k

i�1 ;

(62b)

where n and i have opposite parity. It follows that for i¼ 0,

C2mþ1
0 ¼ �n�2

n
Cn�2

0 ¼n�4

n
Cn�4

0 ¼ð�1Þðn�1Þ=2

n
; n¼odd;

0; n¼ even:

8<
:

(63)

The corresponding summation in Eq. (61) is

g0 ¼ tan�1 xv

cv2 � x2x

� �
: (64)

For i¼ 1,

Cn
1 ¼

2ðn� 1Þ
nþ 1

Cn�1
0 � n� 2

nþ 1
Cn�2

1 ¼ 2
ð�1Þðn�2Þ=2

nþ 1
� n� 2

nþ 1
Cn�2

1 ; n ¼ even;

0; n ¼ odd:

8<
: (65)

It is easy to see that if

Cn�2
1 ¼ ð�1Þðn�4Þ=2 � 2

3
; (66)

for n even, then8

Cn
1 ¼ ð�1Þðn�2Þ=2 � 2

3
: (67)

Since it is true for n¼ 2, then by mathematical induction it is
true for all even n. The corresponding summation in Eq. (61) is

g1 ¼
2

3

cxv3

½x2v2 þ ðcv2 � x2xÞ2�
: (68)

From i¼ 2 on, the summations do not reduce to readily iden-
tifiable functions.

In the limit c! 0, the equations should reduce to those
for the simple harmonic oscillator. To first order in cv=x,
Eq. (61) becomes

0 ¼ xt� tan�1 xv

cv2 �x2x

� �
� 2

3

xcv3

½x2v2 þ ðcv2 �x2xÞ2�
;

(69)

which agrees with the harmonic oscillator result when the
damping vanishes. The transit time from one turning point
to the other is xðtþ � t�Þ. The last term on the right in Eq.
(69) vanishes since v¼ 0 at the turning points; the argument
of the tan�1 also vanishes at each turning point, but since
the argument changes sign and diverges at the intermediate
point where the denominator is zero, p must be added to

keep xt continuous. The transit time is also the half-period
so that

s ¼ 2p
x
: (70)

To first order in c, the frequency of the quadratically damped
oscillator is identical to the natural frequency.

Fig. 5. Three full cycles of the quadratically damped oscillator to first-order

in cv=x.
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A graph of x(t) for any given half-cycle is constructed by
inserting vnðxÞ from Eq. (54) into Eq. (69) and calculating
tnðxÞ, then plotting the results as xnðtÞ. At the end of each
half-cycle, the calculation starts anew with vnþ1ðxÞ. The
graphs are mated at the end of the half-cycle:

xnð0Þ ¼ xn�1ðp=xÞ ¼ xð½n� 1�p=xÞ: (71)

The result for three full cycles is shown in Fig. 5. The decay-
ing oscillation in Fig. 5 may be compared with the exponen-

tial amplitude decay seen in the linearly damped oscillator.
The differences can be brought out by plotting a similar ex-
ponential fit as shown in Fig. 6. The exponential decay has
been arbitrarily forced to fit the turning points at the begin-
ning and end of the first cycle. Clearly, the decay of the
quadratically damped oscillator is much slower than expo-
nential. The equivalent comparison in phase space, as shown
in Fig. 7, is equally illuminating.

The analytical expression corresponding to the curve in
Fig. 5 is

0 ¼ xtn � tan�1
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2cxEn þ x2x

c þ x2

2c2

q
2ce2cxEn þ x2

2c

0
@

1
A

� 2

3

cx 2e2cxEn þ x2x
c þ x2

2c2

h i3=2

4c2E2
ne4cx þ 3x2Ene2cx þ x4x

c þ 3x4

4c2

0
B@

1
CA;

ns
2
< tn �

ðnþ 1Þs
2

: (72)

V. CONCLUSION

Not surprisingly, the method used here lies in extremely
close analogy to other, more standard, methods of solving
this problem. It is, after all, a one-dimensional problem, for
which every approach is at heart a variation on a single
theme. But choice of approach is suggested by point of view.
The “second-order differential equation” point of view sug-
gests the straightforward “brute force” approach of the
power series expansion. By contrast, the use of an integrating
factor to find the first integral of Eq. (14) suggests the stand-
ard approach of analyzing the integral curves and the phase
space portraiture9 for insight into the dynamics; inverting the
first integral to get v(x;S), and separating to obtain the quad-
rature of Eq. (19), follows. Focusing on v(x) and proceeding
with the integration over x is very natural at this point.

This paper presents a third approach that starts from the
point of view that Eq. (15) provides a second constant of the
motion, defined in such a way that x and v have equal stand-
ing as independent variables. This approach suggests the
alternate quadrature of Eq. (23) on an equal footing with Eq.
(19).

As demonstrated here, this third point of view can be
rewarding.
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