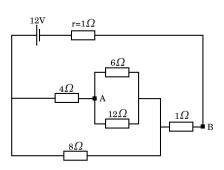

9. Corriente continua

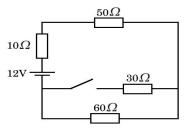
Resistencias

- 1. Dadas tres resistencias de valores 1Ω , 2Ω y 4Ω , ¿qué valores de resistencia se pueden obtener por su combinación, haciendo las diversas conexiones posibles?
- 2. En los circuitos de las figuras, calcule la corriente en cada una de las resistencias y la caída de tensión en cada resistencia.

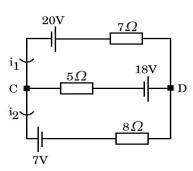
3. Dado el circuito de la figura, calcule: la corriente en R1 y R2


la corriente en R4

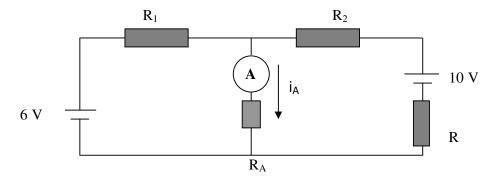
el valor de R4


la diferencia de potencial entre los puntos A y B, indicando cuá ellos está a mayor potencial

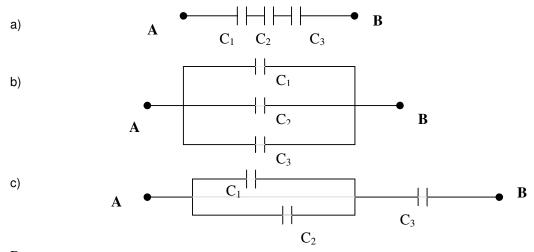
Datos: E = 24V, i = 4 A, R1 = 5
$$\Omega$$
, R2 = 5 Ω
R3 = 10 Ω


4. En el circuito de la figura, calcule: la corriente por la batería la diferencia de potencial entre los puntos A y B. la potencia disipada en r (resistencia interna de la fuente) y en las resistencias de 4 y 8Ω Resp.: a) 2A, b) 6V, c) 4W, 4W, 8W

5. En el circuito de la figura, halle: la potencia entregada por la batería con la llave L abierta la caída de tensión en la resistencia de 30Ω en estas condiciones repetir a) y b) con la llave cerrada el consumo del circuito en Wh luego de 4 horas de funcionamiento con la llave L cerrada Resp.: a) 1,2W, b) 0V, c) 1,8W, d)7,2 Wh



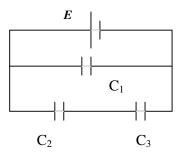
6. Calcule para el circuito de la figura: las corrientes i1 e i2 la diferencia de potencial entre C y D la potencia disipada por la resistencia de 5Ω Resp.: a) i1 = -1,15 A, i2 = -2,37 A, b) 11,9 V, c) 7,37W


7. Para medir la resistencia interna R de una pila de 10 V se dispone de un amperímetro con una resistencia interna $R_A=1\Omega$, otra pila de 6V y dos resistencias $R_1=3\Omega$ y $R_2=2,5\Omega$. Se arma el circuito de la figura y se mide en el amperímetro una corriente i_A de 3A que circula en el sentido indicado. Calcule el valor de R.

¿Qué elemento del circuito disipa mayor potencia? Justifique. Resp.: a) 1Ω, b) R₂

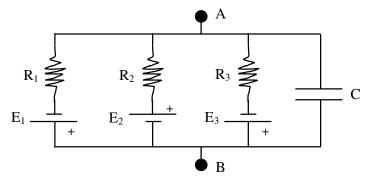
Capacitores

8. Halle la capacidad equivalente entre los extremos A y B en las distintas configuraciones de capacitores (C_1 =1 μ F, C_2 =16 μ F, C_3 =10 μ F).


Respuestas:

a) $0.86\mu F$ b) $27\mu F$ c) $6.3 \mu F$.

- 9. En la red de la figura halle
- (a) la carga de cada condensador,
- (b) la diferencia de potencial
- (c) la energía almacenada en cada uno de ellos.


Datos: C_1 =6 μ F, C_2 =20 μ F, C_3 =5 μ F, E=120 V Respuestas: a) Q_1 =7,2 10^{-4} C; Q_2 = Q_3 =4,8 10^{-4} C

- b) $V_1=120V$; $V_2=24V$; $V_3=96V$
- c) $E_1=0.0432J$; $E_2=0.00576J$; $E_3=0.023J$

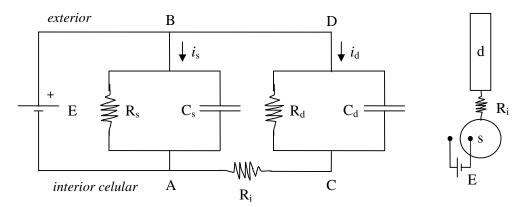
Circuito equivalente de membrana

10. Potencial de membrana. El siguiente circuito representa a una neurona. El punto A corresponde al interior celular y el punto B al exterior. Las ramas 1, 2 y 3 representan el movimiento de iones potasio, sodio y cloro respectivamente a través de la membrana. Considere que el circuito se encuentra funcionando hace suficiente tiempo para que el capacitor esté totalmente cargado.

Datos: $E_1 = 80 \text{ mV}$; $E_2 = 50 \text{ mV}$; $E_3 = 50 \text{ mV}$; $R_1 = 1 \text{ M}\Omega$; $R_2 = 10 \text{ M}\Omega$; $R_3 = 2 \text{ m}\Omega$;

- a) Encuentre el valor de las corrientes que circulan por R₁, R₂ y R₃.
- b) Calcule el "potencial de membrana" (V_A-V_B) y la carga (q) del capacitor.

Se produce ahora un cambio en la resistencia asociada al sodio 1 (R₂) y en consecuencia se mide que V_A-V_B = + 40 mV.


c) Calcule el valor que tomó R₂.

Respuestas:

- a) $|i_1| = 17.5 \text{ nA}$; $|i_2| = 11.25 \text{ nA}$; $|i_3| = 6.25 \text{ nA}$
- b) -62,5 mV; 3,13 pC
- c) 60606Ω

¹ Esto es una simplificación de lo que ocurre al iniciarse un "potencial de acción".

11. Space clamp. El circuito de la izquierda representa la situación descripta en el dibujo de la derecha. Se trata de un modelo simple de una neurona con un cuerpo celular (soma) y una dendrita. Estos dos compartimientos están conectados por una resistencia interna R_i . El investigador aplica una diferencia de potencial E a ambos lados de la membrana del soma. Considere que el circuito se encuentra funcionando hace suficiente tiempo para que el capacitor esté totalmente cargado.

Datos: C_s = 5 nF; C_d = 1 nF; R_s = 1 $G\Omega$; R_d = 12 $G\Omega$; R_i = 1 $G\Omega$; E = 100 mV (negativo en el interior). (n: 10^{-9} ; G: 10^6 ; m: 10^{-3})

- a. ¿Qué valor toma el potencial de la dendrita (V_C-V_D) ? ¿Cómo se compara con el del soma (V_A-V_B) ? Encuentre la corriente que circula por la membrana del soma (i_s) y la que circula por la membrana de la dendrita (i_d) .
- b. ¿Qué parámetro/s pueden cambiar para que el potencial de la dendrita se parezca más al impuesto en el soma (*E*)?

Respuestas: a) $V_d = -92.3 \text{ mV}$; $i_s = 100 \text{ pA}$; $i_d = 7.7 \text{ pA}$

Prefijo	f	p	n	μ	m	k	M	G
	femto	pico	nano	micro	mili	kilo	mega	giga
Factor	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³	10^{3}	10 ⁶	10 ⁹