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Every university introductory physics course considers the problem of Atwood’s machine taking

into account the mass of the pulley. In the usual treatment, the tensions at the two ends of the string

are offhandedly taken to act on the pulley and be responsible for its rotation. However, such a free-

body diagram of the forces on the pulley is not a priori justified, inducing students to construct

wrong hypotheses such as that the string transfers its tension to the pulley or that some symmetry is

in operation. We reexamine this problem by integrating the contact forces between each element of

the string and the pulley and show that although the pulley does behave as if the tensions were

acting on its ends, this comes only as the final result of a detailed analysis. We also address the

question of how much friction is needed to prevent the string from slipping over the pulley.

Finally, we deal with the case in which the string is on the verge of sliding and show that this

cannot happen unless certain conditions are met by the coefficient of static friction and the masses

involved. VC 2018 American Association of Physics Teachers.

https://doi.org/10.1119/1.5016040

I. INTRODUCTION

A crucial step in solving a problem in mechanics by apply-
ing Newton’s laws to interacting bodies is to identify the
individual forces that act on each object. We dare say that
the physics ends there and the rest is only manipulation of
equations. Although this may be too strong a statement, it
has been recognized in recent years that many students have
difficulties with this step and that textbooks and instructors
should give more attention to the correct identification of the
forces on each body.1 One type of problem in which most, if
not all, textbooks fail to correctly identify the forces on each
object are the ones containing strings and massive pulleys.
These problems are treated in any university elementary
physics course that addresses the rotational dynamics of rigid
bodies about a fixed axis.

A staple problem is Atwood’s machine,2 schematically
depicted in Fig. 1. In its simplest incarnation, the pulley and
the string are idealized as massless and the pulley is assumed
to be mounted on a frictionless axle. It is also assumed that
the string does not slip on the pulley, which requires enough
friction between the string and the pulley. Both the idealized
and the realistic case, in which account is taken of the masses
of the string and the pulley as well as of the friction in the
pulley’s bearings, illustrate the principles involved in the
application of Newton’s laws.3,4 Atwood’s machine is a mul-
tipurpose mechanical system, which allows one to investi-
gate from Stokes’s law5 to variable-mass rocket motion.6 If
one of the hanging masses is allowed to swing in a plane, the
resulting two-degree-of-freedom system exhibits a very rich
variety of motions.7 The system is integrable if the mass of
the swinging body is thrice as small as that of the vertically
hanging body,8 but for most other mass ratios it is
nonintegrable.9

Here, we focus our attention on the force and torque
exerted by the string on the pulley. The standard textbook
treatment of Atwood’s machine10 assumes that the tension in
the string is somehow transferred to the pulley and is respon-
sible for the net force and net torque on the pulley. But ten-
sion is an internal force in the string and it is not made clear
how the string can exert a force and a torque on the pulley.

This adds to the conceptual difficulties presented by students
related to the tension in a massless string.11,12

The proper physical analysis consists in taking into
account that each element of the string exerts a force on the
part of the pulley with which it is in contact.13 The present
study complements that of Krause and Sun by treating in
detail not only the total torque but also the net force exerted
by the string on the pulley. We also extend their work by
addressing an interesting question that, as far as we can tell,
is never asked in the textbooks: What is the net friction force
that prevents the string from slipping on the pulley?
Furthermore, we examine the situation in which the string is
on the verge of slipping over the pulley and find that this
condition can be reached only if the mass of the pulley and
the hanging masses satisfy certain necessary conditions.

II. STANDARD TEXTBOOK TREATMENT

OF ATWOOD’S MACHINE

Let us consider Atwood’s machine with a pulley whose
mass M is not negligible in comparison with m1 and m2,
depicted in Fig. 1. As usual, we assume that the string is
inextensible, its mass is negligible and it does not slide on
the pulley, which requires enough static friction between the
string and the pulley. On the other hand, we assume that the
pulley is mounted on a frictionless axle.

For the sake of definiteness let us assume that m2>m1. The
standard free-body diagram of forces on the hanging masses
and the pulley is shown in Fig. 2. Since W1¼m1g and
W2¼m2g, Newton’s second law applied to the masses gives

T1 � m1g ¼ m1a; (1a)

m2g� T2 ¼ m2a: (1b)

As to the pulley, the standard claim10 is that T2 and T1 are
forces exerted by the string on the pulley at the points P and
Q, respectively. The weight of the pulley and the sustaining
force exerted by the axle produce no torque about the rota-
tion axis. Therefore, the net torque on the pulley is s¼T2R –
T1R. The angular acceleration a is given by the so-called
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Newton’s second law for rotational motion, s¼ Ia, so that
one has

ðT2 � T1ÞR ¼ Ia: (2)

Since the string does not slide on the pulley, the constraint
a¼ aR applies. With the use of this constraint and the
assumption that the pulley is a homogeneous disk, whose
pertinent moment of inertia is I¼MR2/2, Eq. (2) becomes

T2 � T1 ¼
M

2
a: (3)

By simply summing Eqs. (1a), (1b), and (3) one gets the
acceleration, and with a little more elementary algebra one
finds the tensions. The result is

a ¼ m2 � m1

m1 þ m2 þM=2
g; T1 ¼

2m2 þM=2

m1 þ m2 þM=2
m1g;

T2 ¼
2m1 þM=2

m1 þ m2 þM=2
m2g: ð4Þ

This standard solution to the problem of the motion of
Atwood’s machine with a massive pulley, as well as the solu-
tions to similar problems that can be found in so many text-
books, is open to a serious physical objection. The forces T2

and T1 are not forces on the pulley, but forces on the points P
and Q of the string exerted by the hanging parts of the string
at each side of the pulley. This gives rise to the problem of
justifying the above results obtained on the basis of a physi-
cally unwarranted identification of the forces on the pulley.
Note that putting directly the forces T2 and T1 on the pulley
might reinforce a common misconception among students that
all strings do is convey forces from one object to another.11

Here, the problem is even more subtle since we do consider
the string as massless, which usually entails that the tension is
constant all along the string. There is also an interesting ques-
tion that is not usually asked in the textbooks: What is the fric-
tion force that prevents the string from slipping on the pulley?

The determination of the net force and the net torque on
the pulley requires an integration of the infinitesimal forces
and torques exerted on the pulley by each element of the
string that touches the pulley. Here, one might be tempted to
justify the usual treatment by the seemingly reasonable con-
jecture that, except for the forces at points P and Q of the
pulley, the vector sum of all forces exerted by the string on
the other points of the pulley cancel each other owing to an
apparent symmetry. This argument turns out to be wrong,
and no such symmetry exists.

III. FORCES ON AN ELEMENT OF THE STRING

We follow the approach used in the analysis of the related
problem of determining the effect of the friction force on a
rope wrapped around a capstan.14,15

For the sake of definiteness we make the assumption that
m2>m1, which implies T2>T1. Figure 3 shows the forces
on a piece of the string that subtends the small angle Dh. F1

and F2 are the tensions at the ends of the string element; f
and n are, respectively, the tangential (friction) and normal
forces exerted by the pulley on the string. Since the string is
massless, Newton’s second law entails that the vector sum of
the forces shown in Fig. 3 is zero

F1 þ F2 þ f þ n ¼ 0: (5)

Let

r̂ðhÞ ¼ cosh x̂þ sinh ŷ; ĥðhÞ ¼ �sinh x̂þ cosh ŷ; (6)

Fig. 3. Forces on a piece of the string that subtends the small angle Dh.

Fig. 1. Atwood’s machine.

Fig. 2. Standard free-body diagram of forces on the masses and the pulley.
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respectively, be the outward normal and tangential (oriented
toward increasing h) unit vectors at the point of the pulley
with angular coordinate h. For the friction force and the nor-
mal force of the pulley on the piece of string, we write

f ¼ �~f ðhÞDh ĥðhÞ; n ¼ ~nðhÞDh r̂ðhÞ; (7)

where ~f and ~n are positive and have dimension of force per
unit angle in radians. Since we will eventually let Dh ! 0,
Eq. (7) has been written as if Dh were infinitesimal.16

The tangential and normal components of Eq. (5) are

F2 cos
Dh
2

� �
� F1 cos

Dh
2

� �
� ~f Dh ¼ 0; (8a)

�F1 sin
Dh
2

� �
� F2 sin

Dh
2

� �
þ ~nDh ¼ 0: (8b)

In Eqs. (8), we have

F2 ¼ jF2j ¼ T hþDh
2

� �
; F1 ¼ jF1j ¼ T h�Dh

2

� �
; (9)

where T(h) is the tension at the point of the string with angu-
lar coordinate h with, of course,

Tð0Þ ¼ T1; TðpÞ ¼ T2: (10)

Therefore Eqs. (8) become

T hþ Dh
2

� �
cos

Dh
2

� �
� T h� Dh

2

� �
cos

Dh
2

� �

� ~f ðhÞDh ¼ 0; (11a)

�T h�Dh
2

� �
sin

Dh
2

� �
�T hþDh

2

� �
sin

Dh
2

� �

þ~nðhÞDh¼0: (11b)

Now we divide each of the two last equations by Dh and
let Dh! 0 to obtain

~f ðhÞ ¼ dT

dh
(12)

and also

~nðhÞ ¼ TðhÞ: (13)

Equation (12) shows that friction causes the tension in the
string to be variable, even though the string is massless.

IV. FORCE ON THE PULLEY

We are now in a position to compute the friction force and
the total force exerted by the string on the pulley.

The net friction force exerted by the pulley on the string is
given by

F
string
f ¼

ðp

0

�~f ðhÞ ĥðhÞ
� �

dh

¼ x̂

ðp

0

dT

dh
sin hdh� ŷ

ðp

0

dT

dh
cos hdh; (14)

where we have used Eqs. (6), (7), and (12). Integrations by
parts yieldðp

0

dT

dh
sin hdh ¼ TðhÞsin hjp0 �

ðp

0

TðhÞcos hdh

¼ �
ðp

0

TðhÞcos hdh (15)

and ðp

0

dT

dh
cos hdh ¼ TðhÞcos hjp0 þ

ðp

0

TðhÞsin hdh

¼ �ðT1 þ T2Þ þ
ðp

0

TðhÞsin hdh: (16)

With these results Eq. (14) becomes

F
string
f ¼ ðT1þT2Þŷ�

ðp

0

TðhÞðcosh x̂þ sinh ŷÞdh: (17)

One could think that by symmetry the x-component in
Eq. (17) would be zero, but this is not true because
TðhÞ 6¼ Tðp� hÞ. We also note that the friction force on the
string cannot be determined unless the tension is known as a
function of h. Thus, in general, the question “What is the
friction force that prevents the string from slipping over the
pulley?” does not have a definite answer. As will be seen
shortly, however, T(h) can be found explicitly if the string is
on the verge of sliding on the pulley.

The net normal force exerted by the pulley on the string is
given by

Fstring
n ¼

ðp

0

~nðhÞ r̂ðhÞ dh ¼
ðp

0

TðhÞðcos h x̂ þ sin h ŷÞdh;

(18)

where Eqs. (6), (7), and (13) have been used. From Eqs. (17)
and (18), it follows at once that

F
string
f þ Fstring

n � ðT1 þ T2Þŷ ¼ 0: (19)

Note that �ðT1 þ T2Þŷ is the total force on the part of the
string in contact with the pulley exerted by the hanging
pieces of the string at each side of the pulley. Thus the last
result is correct: the total force on the part of the string in
contact with the pulley is zero because the string is massless.

By Newton’s third law, the total force exerted by the
string on the pulley is

Fpulley ¼ �ðFstring
f þ Fstring

n Þ ¼ �ðT1 þ T2Þŷ: (20)

Therefore, although T2 and T1 are not forces on the pulley,
everything happens as if they actually were forces applied by
the string at the points P and Q of the pulley shown in Fig. 2.
The usual textbook derivation may leave the student with the
false impression that the forces exerted by the string on the
other points of the pulley cancel each other owing to an
apparent symmetry, which in fact does not exist.

V. TORQUE ON THE PULLEY

The torque exerted by the string on an element of the pul-
ley that subtends an angle dh is
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dspulley¼Rr̂�ð�fÞ¼Rr̂� ĥ~f ðhÞdh¼ ~f ðhÞRẑdh; (21)

where Eq. (7) has been used. By making use of Eq. (12) we
are led to

dspulley ¼ ẑR
dT

dh
dh: (22)

Therefore,

spulley ¼ ẑR

ðp

0

dT

dh
dh ¼ RðT2 � T1Þẑ: (23)

Once again, this is the torque on the pulley obtained by the a
priori physically unwarranted assumption that T2 and T1 are
forces on the pulley and that the torques applied by the string
on the pulley at points other than the points P and Q shown
in Fig. 2 cancel each other owing to an apparent (but nonex-
istent) symmetry. It should be noted that, differently from
what has been done here, one can calculate directly the total
torque on the pulley without first finding the net frictional
and normal forces.13

VI. STRING ON THE VERGE OF SLIDING

Let us suppose that the string is on the verge of sliding on
the pulley. If l is the coefficient of static friction between
the string and the pulley we have

~f ¼ l~n: (24)

This equation deserves some discussion, since it implies that
all points of the string that are in contact with the pulley
reach the slipping condition simultaneously. Let us first note
that, by Eq. (12), the tension T(h) is a differentiable function,
so it is also continuous. Suppose the string is not on the verge
of slipping. As the tension T2 is gradually increased, by con-
tinuity the tension at each point of the string with 0� h� p
also gradually increases, no discontinuous jump is possible
for T(h). If at any point of the string the condition of being
on the verge of slipping has not yet been reached, the corre-
sponding portion of the string will not slip if T2 is further
infinitesimally increased. Therefore, a further infinitesimal
increment of T2 will make the entire string slip only if the
condition of being on the verge of slipping is reached simul-
taneously at all points of the string. If the slipping condition
could be reached at some portion of the string but not at the
others, by a further infinitesimal increment of T2 one portion
of the string would start to slip before the others, which is
impossible because the string is inextensible by hypothesis.
In addition to these theoretical arguments, Eq. (24) leads to
Eq. (26) below which is vindicated by experiment.18

Combining Eq. (24) with Eqs. (12) and (13) we find

dT

dh
¼ lT: (25)

It follows that

TðhÞ ¼ T1elh (26)

inasmuch as T(0)¼ T1. Since T2 ¼ TðpÞ ¼ T1elp, the friction
coefficient is determined

l ¼ 1

p
ln

T2

T1

� �
: (27)

By the way, the exponential growth of the tension explains
why, if a rope is wound several times around a capstan, it
takes an enormous force to make the rope slide on the cap-
stan by pulling one end against a tiny force at the other
end.14,15

Now the friction force on the pulley can be explicitly com-
puted. From Eqs. (17) and (26) we have

F
pulley
f ¼ �F

string
f ¼ �ðT1 þ T2Þŷ

þ
ðp

0

TðhÞðcos hx̂ þ sin h ŷÞdh

¼ �ðT1 þ T2Þŷ þ x̂T1

ðp

0

elh cos hdh

þ ŷT1

ðp

0

elh sin hdh : (28)

The integrals are elementary and can be easily found as
the real and imaginary parts of the complex integralÐ

eðlþiÞhdh ¼ eðlþiÞh=ðlþ iÞðp

0

elh cos hdh ¼ elh

1þ l2
ðsin hþ l cos hÞjp0

¼ � l
1þ l2

ð1þ elpÞ; (29)

ðp

0

elh sin hdh ¼ elh

1þ l2
ðl sin h� cos hÞjp0

¼ 1

1þ l2
ð1þ elpÞ: (30)

Therefore,

F
pulley
f ¼ �ðT1 þ T2Þŷ �

lT1

1þ l2
ð1þ elpÞx̂

þ T1

1þ l2
ð1þ elpÞŷ: (31)

With the help of Eq. (27) and a little algebra this last result
can be cast in the following form:

F
pulley
f ¼� l

1þl2
T1þT2ð Þx̂� l2

1þl2
T1þT2ð Þŷ: (32)

Now we have a definite answer to our previous question:
Eq. (32) yields the net friction force that prevents slippage of
the string over the pulley, and it is worth noting that it has a
horizontal component. Since the net friction force is the
resultant of forces continuously applied along a curved path,
it does not seem physically equivalent to a single force that
would prevent the string from slipping.

From Eqs. (4) and (27), it follows that:

T2

T1

¼ 4m1 þMð Þm2

4m2 þMð Þm1

¼ elp: (33)

Solving this equation for M we find

M ¼ 4m1m2 elp � 1ð Þ
m2 � m1elp

: (34)

Note that if m2�m1elp then the string will never slip relative
to the pulley no matter how large the pulley mass is. On the
other hand, solving Eq. (33) for m2 we get
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m2 ¼
Mm1elp

M � 4m1 elp � 1ð Þ : (35)

If M � 4m1ðelp � 1Þ there is no positive solution for m2.
Therefore, two necessary conditions for the string to be on
the verge of slipping over the pulley are

m2 > m1elp and M > 4m1ðelp � 1Þ: (36)

The first requirement is expected from the force amplifica-
tion effect brought about by a rope wrapped around a cap-
stan.14,15 It would be the only necessary condition if the
pulley could not rotate or, equivalently, if its mass were infi-
nite. The second requirement is not so obvious and stems
from the fact that the pulley can freely turn on its axle.

So as to have an idea of the order of magnitude of the
masses that are required for the string to be on the verge of
sliding, let us assume that m1¼ 1 kg, m2¼ 3 kg and l¼ 0.3.
Then Eq. (34) gives M� 43 kg, an appreciably large mass
for the pulley.

VII. CONCLUDING REMARKS

We have argued that the usual textbook solution to a clas-
sic problem in rotational dynamics, Atwood’s machine,
relies on a faulty identification of forces on each object, since
the tensions in the hanging parts of the string are identified
as forces on the pulley. This may seem a small detail, but we
believe it is an important one, since correctly identifying the
forces on each of a system of interacting bodies is a funda-
mental step in solving a mechanics problem by means of
Newton’s laws. Such a shortcut also reinforces a common
misconception between students to the effect that strings
merely convey forces without affecting them.11

We have presented a consistent treatment of the problem
by considering the normal and friction forces between each
element of the string and the pulley, and have shown that the
contact force exerted on the pulley by the entire segment of
the string that touches the pulley gives rise to the net force
and the net torque usually assumed without a convincing jus-
tification in the standard treatment given in the textbooks.

Although presenting the full mathematical treatment of
the problem, as done here, is beyond the scope of an intro-
ductory physics course, we believe that attention should be
called to the fact that the force on the pulley arises from con-
tact forces exerted by the string and that a careful analysis
gives the conjectured result (23) for the torque on the pulley.
Another possibility is to consider the pulley together with
the segment of the string that touches it as a single object
with the same moment of inertia as that of the pulley, since
the string is massless. As far as the angular acceleration of
this object is concerned, one is allowed to disregard the inter-
nal forces between the aforesaid segment of the string and
the pulley, and now T1 and T2 are actually external forces
responsible for the net external torque on the pulley-string
segment system.13
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