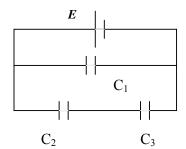

Física (Paleontólogos)- 2do cuatrimestre 2015 Guía 7- Circuitos

Circuitos con capacitores


1. Halle la capacidad equivalente entre los extremos A y B en las distintas configuraciones de capacitores (C_1 =1 μ F, C_2 =16 μ F, C_3 =10 μ F).

Resp: a) $0.86\mu F$ b) $27\mu F$ c) $6.3 \mu F$.

- 2. Para la configuración de capacitores de la figura, C_1 =6 µF, C_2 =20 µF, C_3 =5 µF, E=120 V, halle:
- a) la carga de cada condensador
- b) la diferencia de potencial
- c) la energía almacenada en cada uno de ellos.

Resp: a) $Q_1=7.2\ 10^{-4}$ C; $Q_2=Q_3=4.8\ 10^{-4}$ C; b) $V_1=120V$; $V_2=24V$; $V_3=96V$; c) $E_1=0.0432J$; $E_2=0.00576J$; $E_3=0.023J$

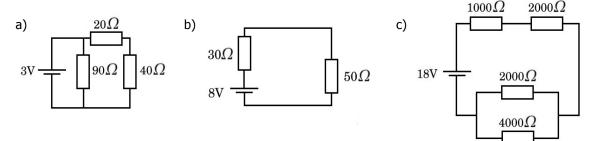
Prefijo	f	p	n	μ	m	k	M	G
	femto	pico	nano	micro	mili	kilo	mega	giga
Factor	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10^{-6}	10^{-3}	10^{3}	10^{6}	10^{9}

1

Circuitos con resistencias

- 3. a) El área de la sección transversal del riel de acero de un tren es de 5 cm². ¿Cuál es la resistencia de 10 km de riel, si la resistividad del acero es de $7.2 \times 10^{-7} \Omega \text{ m}$?
- b) Se tiene un metro de cable de Cu de 2mm de radio. Calcule su resistencia si la resitivad del cobre es de $~1.7 \times 10^{-8} \Omega$ m .

Resp: a) 14.4Ω ; b) $1.35 \times 10^{-4} \Omega$


4. Por una resistencia de $10~\Omega$ circula una corriente de 5 A. ¿Cuánta carga pasa por la sección transversal de esta resistencia en 4 minutos? ¿Cuántos electrones son?

Resp: 1200 C y 7,5 10²¹ electrones

5. Dadas tres resistencias de valores $1~\Omega, 2~\Omega~y~4~\Omega$, ¿qué valores de resistencia se pueden obtener por su combinación, haciendo las diversas conexiones posibles?

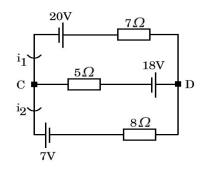
Resp: (en Ω) 7; 4/7; 7/3; 14/5; 14/3; 6/7; 10/7; 12/7


6. En los circuitos de las figuras, calcule la corriente, la caída de tensión y la potencia entregada en cada resistencia.

Resp: a) 33 mA y 50 mA; 3V, 1V, 2V; b) 100 mA; 3V y 5 V; c) 4.15 mA, 2.77 mA y 1.38 mA; 4.15 V, 8.3V y 5.54 V.

- 7. Dado el circuito de la figura , donde E = 24V, i = 4 A, R_1 = 5 Ω , R_2 = 5 Ω , R_3 = 10 Ω , calcule:
- a) la corriente por cada resistencia
- b) el valor de la resistencia R4
- c) la diferencia de potencial entre los puntos A y B

Resp. $i_1=i_2=i_3=2A$, R4=1 Ω , $\Delta V_{AB}=14 \text{ V}$.

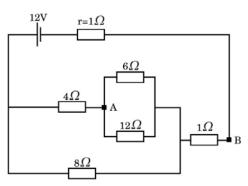


- 7'. En el circuito de la figura, halle:
- a) la potencia entregada por la batería si la llave L está abierta
- b) la caída de tensión en la resistencia de 30 Ω en estas condiciones.
- c) Repetir a) y b) con la llave cerrada.
- d) Halle el consumo del circuito en Wh luego de 4 horas de funcionamiento con la llave L cerrada

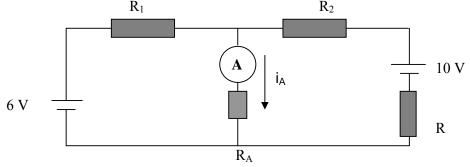
Resp.: a) 1,2W, b) 0V, c) 1,8W, d) 7,2 Wh

8. Para el circuito de la figura calcule las corrientes i_1 e i_2 , la diferencia de potencial entre C y D, y la potencia disipada por la resistencia de 5 Ω

Resp. i1 = -1,15 A, i2 = -2,37 A ,
$$\Delta V_{CD}$$
= 11,9 V, P= 7,37 W



 10Ω


12V

- **9**. En el circuito de la figura, calcule:
- a) la corriente por la batería
- b) la diferencia de potencial entre los puntos A y B.
- c) la potencia disipada en r (resistencia interna de la fuente) y en las resistencias de 4 y 8 Ω

Resp. a) 2A, b) 6V, c) 4W, 4W, 8W

10. Para medir la resistencia interna R de una pila de 10 V se dispone de un amperímetro con una resistencia interna $R_A=1~\Omega$, otra pila de 6V y dos resistencias $R_1=3\Omega$ y $R_2=2,5\Omega$. Se arma el circuito de la figura y se mide en el amperímetro una corriente i_A de 3A que circula en el sentido indicado.

Calcule el valor de R. ¿Qué elemento del circuito disipa mayor potencia? Justifique.

Resp. 1Ω , la que más disipa es R_2