
3 Ghosts of departed quantities
Calculus

What does it say?

To find the instantaneous rate of change of a quantity that

varies with (say) time, calculate how its value changes over a

short time interval and divide by the time concerned. Then let

that interval become arbitrarily small.

Why is that important?

It provides a rigorous basis for calculus, the main way scientists

model the natural world.

What did it lead to?

Calculation of tangents and areas. Formulas for volumes of

solids and lengths of curves. Newton’s laws of motion,

differential equations. The laws of conservation of energy and

momentum. Most of mathematical physics.
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In 1665 Charles II was king of England and his capital city, London, was

a sprawling metropolis of half a million people. The arts flourished, and

science was in the early stages of an ever-accelerating ascendancy. The

Royal Society, perhaps the oldest scientific society now in existence, had

been founded five years earlier, and Charles had granted it a royal charter.

The rich lived in impressive houses, and commerce was thriving, but the

poor were crammed into narrow streets overshadowed by ramshackle

buildings that jutted out ever further as they rose, storey by storey.

Sanitation was inadequate; rats and other vermin were everywhere. By the

end of 1666, one fifth of London’s population had been killed by bubonic

plague, spread first by rats and then by people. It was the worst disaster in

the capital’s history, and the same tragedy played out all over Europe and

North Africa. The king departed in haste for the more sanitary countryside

of Oxfordshire, returning early in 1666. No one knew what caused plague,

and the city authorities tried everything – burning fires continually to

cleanse the air, burning anything that gave off a strong smell, burying the

dead quickly in pits. They killed many dogs and cats, which ironically

removed two controls on the rat population.

During those two years, an obscure and unassuming undergraduate at

Trinity College, Cambridge, completed his studies. Hoping to avoid the

plague, he returned to the house of his birth, from which his mother

managed a farm. His father had died shortly before he was born, and he

had been brought up by his maternal grandmother. Perhaps inspired by

rural peace and quiet, or lacking anything better to do with his time, the

young man thought about science and mathematics. Later he wrote: ‘In

those days I was in the prime of my life for invention, and minded

mathematics and [natural] philosophy more than at any other time since.’

His researches led him to understand the importance of the inverse square

law of gravity, an idea that had been hanging around ineffectually for at

least 50 years. He worked out a practical method for solving problems in

calculus, another concept that was in the air but had not been formulated

in any generality. And he discovered that white sunlight is composed of

many different colours – all the colours of the rainbow.
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When the plague died down, he told no one about the discoveries he

had made. He returned to Cambridge, took a master’s degree, and became a

fellow at Trinity. Elected to the Lucasian Chair of Mathematics, he finally

began to publish his ideas and to develop new ones.

The young man was Isaac Newton. His discoveries created a revolution

in science, bringing about a world that Charles II would never have

believed could exist: buildings with more than a hundred floors, horseless

carriages doing 80 mph along the M6 motorway while the driver listens to

music using a magic disc made from a strange glasslike material, heavier-

than-air flying machines that cross the Atlantic in six hours, colour

pictures that move, and boxes you carry in your pocket that talk to the

other side of the world...

Previously, Galileo Galilei, Johannes Kepler, and others had turned up

the corner of nature’s rug and seen a few of the wonders concealed beneath

it. Now Newton cast the rug aside. Not only did he reveal that the universe

has secret patterns, laws of nature; he also provided mathematical tools to

express those laws precisely and to deduce their consequences. The system

of the world was mathematical; the heart of God’s creation was a soulless

clockwork universe.

The world view of humanity did not suddenly switch from religious to

secular. It still has not done so completely, and probably never will. But

after Newton published his Philosophiæ Naturalis Principia Mathematica

(‘Mathematical Principles of Natural Philosophy’) the ‘System of the

World’ – the book’s subtitle – was no longer solely the province of

organised religion. Even so, Newton was not the first modern scientist; he

had a mystical side too, devoting years of his life to alchemy and religious

speculation. In notes for a lecture1 the economist John Maynard Keynes,

also a Newtonian scholar, wrote:

Newton was not the first of the age of reason. He was the last of the

magicians, the last of the Babylonians and Sumerians, the last great

mind which looked out on the visible and intellectual world with the

same eyes as those who began to build our intellectual inheritance

rather less than 10,000 years ago. Isaac Newton, a posthumous child

born with no father on Christmas Day, 1642, was the last wonderchild

to whom the Magi could do sincere and appropriate homage.

Today we mostly ignore Newton’s mystic aspect, and remember him for his

scientific and mathematical achievements. Paramount among them are his

realisation that nature obeys mathematical laws and his invention of
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calculus, the main way we now express those laws and derive their

consequences. The German mathematician and philosopher Gottfried

Wilhelm Leibniz also developed calculus, more or less independently, at

much the same time, but he did little with it. Newton used calculus to

understand the universe, though he kept it under wraps in his published

work, recasting it in classical geometric language. He was a transitional

figure who moved humanity away from a mystical, medieval outlook and

ushered in the modern rational world view. After Newton, scientists

consciously recognised that the universe has deep mathematical patterns,

and were equipped with powerful techniques to exploit that insight.

The calculus did not arise ‘out of the blue’. It came from questions in both

pure and applied mathematics, and its antecedents can be traced back to

Archimedes. Newton himself famously remarked, ‘If I have seen a little

further it is by standing on the shoulders of giants. ’2 Paramount among

those giants were John Wallis, Pierre de Fermat, Galileo, and Kepler. Wallis

developed a precursor to calculus in his 1656 Arithmetica Infinitorum

(‘Arithmetic of the Infinite’). Fermat’s 1679 De Tangentibus Linearum

Curvarum (‘On Tangents to Curved Lines’) presented a method for finding

tangents to curves, a problem intimately related to calculus. Kepler

formulated three basic laws of planetary motion, which led Newton to

his law of gravity, the subject of the next chapter. Galileo made big

advances in astronomy, but he also investigated mathematical aspects of

nature down on the ground, publishing his discoveries in De Motu (‘On

Motion’) in 1590. He investigated how a falling body moves, finding an

elegant mathematical pattern. Newton developed this hint into three

general laws of motion.

To understand Galileo’s pattern we need two everyday concepts from

mechanics: velocity and acceleration. Velocity is how fast something is

moving, and in which direction. If we ignore the direction, we get the

body’s speed. Acceleration is a change in velocity, which usually involves a

change in speed (an exception arises when the speed remains the same but

the direction changes). In everyday life we use acceleration to mean

speeding up and deceleration for slowing down, but in mechanics both

changes are accelerations: the first positive, the second negative. When we

drive along a road the speed of the car is displayed on the speedometer – it

might, for instance, be 50mph. The direction is whichever way the car is

pointing. When we put our foot down, the car accelerates and the speed

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
03Seventeen_Chap3.3d Page 39 of 52

39Calculus



increases; when we stamp on the brakes, the car decelerates – negative

acceleration.

If the car is moving at a fixed speed, it’s easy to work out what that

speed is. The abbreviation mph gives it away: miles per hour. If the car

travels 50 miles in 1 hour, we divide the distance by the time, and that’s

the speed. We don’t need to drive for an hour: if the car goes 5 miles in

6 minutes, both distance and time are divided by 10, and their ratio is still

50 mph. In short,

speed¼distance travelled divided by time taken.

In the same way, a fixed rate of acceleration is given by

acceleration¼ change in speed divided by time taken.

This all seems straightforward, but conceptual difficulties arise when the

speed or acceleration is not fixed. And they can’t both be constant, because

constant (and nonzero) acceleration implies a changing speed. Suppose

you drive along a country lane, speeding up on the straights, slowing for

the corners. Your speed keeps changing, and so does your acceleration.

How can we work them out at any given instant of time? The pragmatic

answer is to take a short interval of time, say a second. Then your

instantaneous speed at (say) 11.30 am is the distance you travel between

that moment and one second later, divided by one second. The same goes

for instantaneous acceleration.

Except . . . that’s not quite your instantaneous speed. It’s really an

average speed, over a one-second interval of time. There are circumstances

in which one second is a huge length of time – a guitar string playing

middle C vibrates 440 times every second; average its motion over an entire

second and you’ll think it’s standing still. The answer is to consider a

shorter interval of time – one ten thousandth of a second, perhaps. But

this still doesn’t capture instantaneous speed. Visible light vibrates one

quadrillion (1015) times every second, so the appropriate time interval is

less than one quadrillionth of a second. And even then . . . well, to be

pedantic, that’s still not an instant. Pursuing this line of thought, it seems

to be necessary to use an interval of time that is shorter than any other

interval. But the only number like that is 0, and that’s useless, because now

the distance travelled is also 0, and 0/0 is meaningless.

Early pioneers ignored these issues and took a pragmatic view. Once

the probable error in your measurements exceeds the increased precision

you would theoretically get by using smaller intervals of time, there’s no

point in doing so. The clocks in Galileo’s day were very inaccurate, so he
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measured time by humming tunes to himself – a trained musician can

subdivide a note into very short intervals. Even then, timing a falling body

is tricky, so Galileo hit on the trick of slowing the motion down by rolling

balls down an inclined slope. Then he observed the position of the ball at

successive intervals of time. What he found (I’m simplifying the numbers

to make the pattern clear, but it’s the same pattern) is that for times 0, 1, 2,

3, 4, 5, 6, . . . these positions were

0 1 4 9 16 25 36

The distance was (proportional to) the square of the time. What about the

speeds? Averaged over successive intervals, these were the differences

1 3 5 7 9 11

between the successive squares. In each interval, other than the first, the

average speed increased by 2 units. It’s a striking pattern – all the more

so to Galileo when he dug something very similar out of dozens of

measurements with balls of many different masses on slopes with many

different inclinations.

From these experiments and the observed pattern, Galileo deduced

something wonderful. The path of a falling body, or one thrown into the

air, such as a cannonball, is a parabola. This is a U-shaped curve, known to

the ancient Greeks. (The U is upside down in this case. I’m ignoring air

resistance, which changes the shape: it didn’t have much effect on

Galileo’s rolling balls.) Kepler encountered a related curve, the ellipse, in

his analysis of planetary orbits: this must have seemed significant to

Newton too, but that story must wait until the next chapter.

With only this particular series of experiments to go on, it’s not clear

what general principles underlie Galileo’s pattern. Newton realised that the

source of the pattern is rates of change. Velocity is the rate at which

position changes with respect to time; acceleration is the rate at which

velocity changes with respect to time. In Galileo’s observations, position

varied according to the square of time, velocity varied linearly, and

acceleration didn’t vary at all. Newton realised that in order to gain a

deeper understanding of Galileo’s patterns, and what they meant for our

view of nature, he had to come to grips with instantaneous rates of change.

When he did, out popped calculus.

You might expect an idea as important as calculus to be announced with a

fanfare of trumpets and parades through the streets. However, it takes time

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
03Seventeen_Chap3.3d Page 41 of 52

41Calculus



for the significance of novel ideas to sink in and to be appreciated, and so it

was with calculus. Newton’s work on the topic dates from 1671 or earlier,

when he wrote The Method of Fluxions and Infinite Series. We are unsure of

the date because the book was not published until 1736, nearly a decade

after his death. Several other manuscripts by Newton also refer to ideas that

we now recognise as differential and integral calculus, the two main

branches of the subject. Leibniz’s notebooks show that he obtained his first

significant results in calculus in 1675, but he published nothing on the

topic until 1684.

After Newton had risen to scientific prominence, long after both men

had worked out the basics of calculus, some of Newton’s friends sparked a

largely pointless but heated controversy about priority, accusing Leibniz of

plagiarising Newton’s unpublished manuscripts. A few mathematicians

from continental Europe responded with counter-claims of plagiarism by

Newton. English and continental mathematicians were scarcely on

speaking terms for a century, which caused huge damage to English

mathematicians, but none whatsoever to the continental ones. They

developed calculus into a central tool of mathematical physics while their

English counterparts were seething about insults to Newton instead of

exploiting insights from Newton. The story is tangled and still subject to

scholarly disputation by historians of science, but broadly speaking it

seems that Newton and Leibniz discovered the basic ideas of calculus

independently – at least, as independently as their common mathematical

and scientific culture permitted.

Leibniz’s notation differs from Newton’s, but the underlying ideas are

more or less identical. The intuition behind them, however, is different.

Leibniz’s approach was a formal one, manipulating algebraic symbols.

Newton had a physical model at the back of his mind, in which the

function under consideration was a physical quantity that varies with time.

This is where his curious term ‘fluxion’ comes from – something that flows

as time passes.

Newton’s method can be illustrated using an example: a quantity y that

is the square x2 of another quantity x. (This is the pattern that Galileo

found for a rolling ball: its position is proportional to the square of the time

that has elapsed. So there y would be position and x time. The usual symbol

for time is t, but the standard coordinate system in the plane uses x and y.)

Start by introducing a new quantity o, denoting a small change in x. The

corresponding change in y is the difference

ðxþ oÞ2 $ x2
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which simplifies to 2xo + o2. The rate of change (averaged over a small

interval of length o, as x increases to x+ o) is therefore

2xoþ o2

o
¼2xþ o

This depends on o, which is only to be expected since we are averaging the

rate of change over a nonzero interval. However, if o becomes smaller and

smaller, ‘flowing towards’ zero, the rate of change 2x+ o gets closer and

closer to 2x. This does not depend on o, and it gives the instantaneous rate

of change at x.

Leibniz performed essentially the same calculation, replacing o by dx

(‘small difference in x’), and defining dy to be the corresponding small

change in y. When a variable y depends on another variable x, the rate of

change of y with respect to x is called the derivative of y. Newton wrote the

derivative of y by placing a dot above it: ẏ. Leibniz wrote
dy

dx
. For higher

derivatives, Newton used more dots, while Leibniz wrote things like
d2y

dx2
.

Today we say that y is a function of x and write y= f(x), but this concept

existed only in rudimentary form at the time. We either use Leibniz’s

notation, or a variant of Newton’s in which the dot is replaced by a dash,

which is easier to print: y ¢, y ¢¢. We also write f ¢(x) and f ¢¢(x) to emphasise

that the derivatives are themselves functions. Calculating the derivative is

called differentiation.

Integral calculus – finding areas – turns out to be the inverse of

differential calculus – finding slopes. To see why, imagine adding a thin

slice on the end of the shaded area of Figure 12. This slice is very close to a

long thin rectangle, of width o and height y. Its area is therefore very close

to oy. The rate at which the area changes, with respect to x, is the ratio oy/o,

which equals y. So the derivative of the area is the original function. Both

Newton and Leibniz understood that the way to calculate the area, a

process called integration, is the reverse of differentiation in this sense.

Leibniz first wrote the integral using the symbol omn., short for omnia, or

‘sum’, in Latin. Later he changed this to ò, an old-fashioned long s, also

standing for ‘sum’. Newton had no systematic notation for the integral.
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approximately
hf(x)

x x+h

y

Fig 12 Adding a thin slice to the area beneath the curve y = f(x).

Newton did make one crucial advance, however. Wallis had calculated

the derivative of any power xa: it is axa!1. So the derivatives of x3, x4, x5 are

3x2, 4x3, 5x4, for example. He had extended this result to any polynomial –

a finite combination of powers, such as 3x7!25x4 + x2!3. The trick is to

consider each power separately, find the corresponding derivatives, and

combine them in the same manner. Newton noticed that the same method

worked for infinite series, expressions involving infinitely many powers of

the variable. This let him perform the operations of calculus on many other

expressions, more complicated than polynomials.

Given the close correspondence between the two versions of calculus,

differing mainly in unimportant features of the notation, it is easy to see

how a priority dispute might have arisen. However, the basic idea is a fairly

direct formulation of the underlying question, so it is also easy to see how

Newton and Leibniz could have arrived at their versions independently,

despite the similarities. In any case, Fermat and Wallis had beaten them

both to many of their results. The dispute was pointless.

A more fruitful controversy concerned the logical structure of calculus, or

more precisely, the illogical structure of calculus. A leading critic was the

Anglo-Irish philosopher George Berkeley, Bishop of Cloyne. Berkeley had a

religious agenda; he felt that the materialist view of the world that was

developing from Newton’s work represented God as a detached creator

who stood back from his creation as soon as it got going and thereafter left

it to its own devices, quite unlike the personal, immanent God of Christian

belief. So he attacked logical inconsistencies in the foundations of calculus,

presumably hoping to discredit the resulting science. His attack had no

discernible effect on the progress of mathematical physics, for a

straightforward reason: the results obtained using calculus shed so much

insight into nature, and agreed so well with experiment, that the logical
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foundations seemed unimportant. Even today, physicists still take this

view: if it works, who cares about logical hair-splitting?

Berkeley argued that it makes no logical sense to maintain that a small

quantity (Newton’s o, Leibniz’s dx) is nonzero for most of a calculation,

and then to set it to zero, if you have previously divided both the

numerator and the denominator of a fraction by that very quantity.

Division by zero is not an acceptable operation in arithmetic, because it has

no unambiguous meaning. For example, 0 ´ 1=0 ´2, since both are 0, but if

we divide both sides of this equation by 0 we get 1 =2, which is false.3

Berkeley published his criticisms in 1734 in a pamphlet The Analyst, a

Discourse Addressed to an Infidel Mathematician.

Newton had, in fact, attempted to sort out the logic, by appealing to a

physical analogy. He saw o not as a fixed quantity, but as something that

flowed – varied with time – getting closer and closer to zero without ever

actually getting there. The derivative was also defined by a quantity that

flowed: the ratio of the change in y to that of x. This ratio also flowed

towards something, but never got there; that something was the

instantaneous rate of change – the derivative of y with respect to x.

Berkeley dismissed this idea as the ‘ghost of a departed quantity’.

Leibniz too had a persistent critic, the geometer Bernard Nieuwentijt,

who put his criticisms into print in 1694 and 1695. Leibniz had not helped

his case by trying to justify his method in terms of ‘infinitesimals’, a term

open to misinterpretation. However, he did explain that what he meant by

this term was not a fixed nonzero quantity that can be arbitrarily small

(which makes no logical sense) but a variable nonzero quantity that can

become arbitrarily small. Newton’s and Leibniz’s defences were essentially

identical. To their opponents, both must have sounded like verbal trickery.

Fortunately, the physicists and mathematicians of the day did not wait

for the logical foundations of calculus to be sorted out before they applied

it to the frontiers of science. They had an alternative way to make sure they

were doing something sensible: comparison with observations and

experiments. Newton himself invented calculus for precisely this

purpose. He derived laws for how bodies move when a force is applied to

them, and combined these with a law for the force exerted by gravity to

explain many riddles about the planets and other bodies of the Solar

System. His law of gravity is such a pivotal equation in physics and

astronomy that it deserves, and gets, a chapter of its own (the next one).

His law of motion – strictly, a system of three laws, one of which contained

most of the mathematical content – led fairly directly to calculus.

Ironically, when Newton published these laws and their scientific
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applications in his Principia, he eliminated all traces of calculus and

replaced it by classical geometric arguments. He probably thought that

geometry would be more acceptable to his intended audience, and if he

did, he was almost certainly right. However, many of his geometric proofs

are either motivated by calculus, or depend on the use of calculus

techniques to determine the correct answers, upon which the strategy of

the geometric proof relies. This is especially clear, to modern eyes, in his

treatment of what he called ‘generated quantities’ in Book II of Principia.

These are quantities that increase or decrease by ‘continual motion or flux’,

the fluxions of his unpublished book. Today we would call them

continuous (indeed differentiable) functions. In place of explicit

operations of the calculus, Newton substituted a geometric method of

‘prime and ultimate ratios’. His opening lemma (the name given to an

auxiliary mathematical result that is used repeatedly but has no intrinsic

interest in its own right) gives the game away, because it defines equality of

these flowing quantities like this:

Quantities, and the ratios of quantities, which in any finite time

converge continually to equality, and before the end of that time

approach nearer to each other than by any given difference, become

ultimately equal.

In Never at Rest, Newton’s biographer Richard Westfall explains how radical

and novel this lemma was: ‘Whatever the language, the concept ... was

thoroughly modern; classical geometry had contained nothing like it.’4

Newton’s contemporaries must have struggled to figure out what Newton

was getting at. Berkeley presumably never did, because – as we will shortly

see – it contains the basic idea needed to dispose of his objection.

Calculus, then, was playing an influential role behind the scenes of the

Principia, but it made no appearance on stage. As soon as calculus peeped

out from behind the curtains, however, Newton’s intellectual successors

quickly reverse-engineered his thought processes. They rephrased his main

ideas in the language of calculus, because this provided a more natural and

more powerful framework, and set out to conquer the scientific world.

The clue was already visible in Newton’s laws of motion. The question

that led Newton to these laws was a philosophical one: what causes a body

to move, or to change its state of motion? The classical answer was

Aristotle’s: a body moves because a force is applied to it, and this affects its
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velocity. Aristotle also stated that in order to keep a body moving, the force

must continue to be applied. You can test Aristotle’s statements by placing

a book or similar object on a table. If you push the book, it starts to move,

and if you keep pushing with much the same force it continues to slide

over the table at a roughly constant velocity. If you stop pushing, the book

stops moving. So Aristotle’s views seem to agree with experiment.

However, the agreement is superficial, because the push is not the only

force that acts on the book. There is also friction with the surface of the

table. Moreover, the faster the book moves, the greater the friction

becomes – at least, while the book’s velocity remains reasonably small.

When the book is moving steadily across the table, propelled by a steady

force, the frictional resistance cancels out the applied force, and the total

force acting on the body is actually zero.

Newton, following earlier ideas of Galileo and Descartes, realised this.

The resulting theory of motion is very different from Aristotle’s. Newton’s

three laws are:

First law. Every body continues in its state of rest, or of uniform motion

in a right [straight] line, unless it is compelled to change that state by

forces impressed upon it.

Second law. The change of motion is proportional to the motive power

impressed, and is made in the direction of the right line in which that

force is impressed. (The constant of proportionality is the reciprocal of

the body’s mass; that is, 1 divided by that mass.)

Third law. To every action there is always opposed an equal reaction.

The first law explicitly contradicts Aristotle. The third law says that if you

push something, it pushes back. The second law is where calculus comes

in. By ‘change of motion’ Newton meant the rate at which the body’s

velocity changes: its acceleration. This is the derivative of velocity with

respect to time, and the second derivative of position. So Newton’s second

law of motion specifies the relation between a body’s position, and the

forces that act on it, in the form of a differential equation:

second derivative of position= force/mass

To find the position itself, we have to solve this equation, deducing the

position from its second derivative.

This line of thought leads to a simple explanation of Galileo’s

observations of a rolling ball. The crucial point is that the acceleration of

the ball is constant. I stated this previously, using a rough-and-ready
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calculation applied at discrete intervals of time; now we can do it properly,

allowing time to vary continuously. The constant is related to the force of

gravity and the angle of the slope, but here we don’t need that much detail.

Suppose that the constant acceleration is a. Integrating the corresponding

function, the velocity down the slope at time t is at+ b, where b is the

velocity at time zero. Integrating again, the position down the slope is
1
2at

2 + bt+ c, where c is the position at time zero. In the special case a=2,

b=0, c=0 the successive positions fit my simplified example: the position

at time t is t2. A similar analysis recovers Galileo’s major result: the path of

a projectile is a parabola.

Newton’s laws of motion did not just provide a way to calculate how

bodies move. They led to deep and general physical principles. Paramount

among these are ‘conservation laws’, telling us that when a system of

bodies, no matter how complicated, moves, certain features of that system

do not change. Amid the tumult of the motion, a few things remain serenely

unaffected. Three of these conserved quantities are energy, momentum,

and angular momentum.

Energy can be defined as the capacity to do work. When a body is raised

to a certain height, against the (constant) force of gravity, the work done to

put it there is proportional to the body’s mass, the force of gravity, and the

height to which it is raised. Conversely, if we then let the body go, it can

perform the same amount of work when it falls back to its original height.

This type of energy is called potential energy.

On its own, potential energy would not be terribly interesting, but

there is a beautiful mathematical consequence of Newton’s second law of

motion leading to a second kind of energy: kinetic energy. As a body moves,

both its potential energy and its kinetic energy change. But the change in

one exactly compensates for the change in the other. As the body descends

under gravity, it speeds up. Newton’s law allows us to calculate how its

velocity changes with height. It turns out that the decrease in potential

energy is exactly equal to half the mass times the square of the velocity. If

we give that quantity a name – kinetic energy – then the total energy,

potential plus kinetic, is conserved. This mathematical consequence of

Newton’s laws proves that perpetual motion machines are impossible: no

mechanical device can keep going indefinitely and do work without some

external input of energy.

Physically, potential and kinetic energy seem to be two different

things; mathematically, we can trade one for the other. It is as if motion

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
03Seventeen_Chap3.3d Page 48 of 52

48 Ghosts of departed quantities



somehow converts potential energy into kinetic. ‘Energy’, as a term

applicable to both, is a convenient abstraction, carefully defined so that it

is conserved. As an analogy, travellers can convert pounds into dollars.

Currency exchanges have tables of exchange rates, asserting that, say, 1

pound is of equal value to 1.4693 dollars. They also deduct a sum of money

for themselves. Subject to technicalities of bank charges and so on, the

total monetary value involved in the transaction is supposed to balance

out: the traveller gets exactly the amount in dollars that corresponds to

their original sum in pounds, minus various deductions. However, there

isn’t a physical thing built into banknotes that somehow gets swapped out

of a pound note into a dollar note and some coins. What gets swapped is

the human convention that these particular items have monetary value.

Energy is a new kind of ‘physical’ quantity. From a Newtonian

viewpoint, quantities such as position, time, velocity, acceleration, and

mass have direct physical interpretations. You can measure position with a

ruler, time with a clock, velocity and acceleration using both pieces of

apparatus, and mass with a balance. But you don’t measure energy using an

energy meter. Agreed, you can measure certain specific types of energy.

Potential energy is proportional to height, so a ruler will suffice if you know

the force of gravity. Kinetic energy is half the mass times the square of the

velocity: use a balance and a speedometer. But energy, as a concept, is not so

much a physical thing as a convenient fiction that helps to balance the

mechanical books.

Momentum, the second conserved quantity, is a simple concept: mass

times velocity. It comes into play when there are several bodies. An

important example is a rocket; here one body is the rocket and the other is

its fuel. As fuel is expelled by the engine, conservation of momentum

implies that the rocket must move in the opposite direction. This is how a

rocket works in a vacuum.

Angular momentum is similar, but it relates to spin rather than

velocity. It is also central to rocketry, indeed the whole of mechanics,

terrestrial or celestial. One of the biggest puzzles about the Moon is its large

angular momentum. The current theory is that the Moon was splashed off

when a Mars-sized planet hit the Earth about 4.5 billion years ago. This

explains the angular momentum, and until recently was generally

accepted, but it now seems that the Moon has too much water in its

rocks. Such an impact should have boiled a lot of the water away.5

Whatever the eventual outcome, angular momentum is of central

importance here.

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
03Seventeen_Chap3.3d Page 49 of 52

49Calculus



Calculus works. It solves problems in physics and geometry, getting the

right answers. It even leads to new and fundamental physical concepts like

energy and momentum. But that doesn’t answer Bishop Berkeley’s

objection. Calculus has to work as mathematics, not just agree with

physics. Both Newton and Leibniz understood that o or dx cannot be both

zero and nonzero. Newton tired to escape from the logical trap by

employing the physical image of a fluxion. Leibniz talked of infinitesimals.

Both referred to quantities that approach zero without ever getting there –

but what are these things? Ironically, Berkeley’s gibe about ‘ghosts of

departed quantities’ comes close to resolving the issue, but what he failed

to take account of – and what both Newton and Leibniz emphasised – was

how the quantities departed. Make them depart in the right way and you

can leave a perfectly well-formed ghost. If either Newton or Leibniz had

framed their intuition in rigorous mathematical language, Berkeley might

have understood what they were getting at.

The central question is one that Newton failed to answer explicitly

because it seemed obvious. Recall that in the example where y= x2, Newton

obtained the derivative as 2x+ o, and then asserted that as o flows towards

zero, 2x+ o flows towards 2x. This may seem obvious, but we can’t set o=0

to prove it. It is true that we get the right result by doing that, but this is a red

herring.6 In Principia Newton slid round this issue altogether, replacing 2x

+ o by his ‘prime ratio’ and 2x by his ‘ultimate ratio’. But the real key to

progress is to tackle the issue head on. How do we know that the closer o

approaches zero, the closer 2x+ o approaches 2x? It may seem a rather

pedantic point, but if I’d used more complicated examples the correct

answer might not seem so plausible.

When mathematicians returned to the logic of calculus, they realised

that this apparently simple question was the heart of the matter. When we

say that o approaches zero, we mean that given any nonzero positive

number, o can be chosen to be smaller than that number. (This is obvious:

let o be half that number, for instance.) Similarly, when we say that 2x+ o

approaches 2x, we mean that the difference approaches zero, in the

previous sense. Since the difference happens to be o itself in this case, that’s

even more obvious: whatever ‘approaches zero’ means, clearly o

approaches zero when o approaches zero. A more complicated function

than the square would require a more complicated analysis.

The answer to this key question is to state the process in formal

mathematical terms, avoiding ideas of ‘flow’ altogether. This breakthrough

came about through the work of the Bohemian mathematician and

theologian Bernard Bolzano and the German mathematician Karl
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Weierstrass. Bolzano’s work dates from 1816, but it was not appreciated

until about 1870 when Weierstrass extended the formulation to complex

functions. Their answer to Berkeley was the concept of a limit. I’ll state the

definition in words and leave the symbolic version to the Notes.7 Say that a

function f(h) of a variable h tends to a limit L as h tends to zero if, given any

positive nonzero number, the difference between f(h) and L can be made

smaller than that number by choosing sufficiently small nonzero values of

h. In symbols,

lim
h!0

f ðhÞ¼L

The idea at the heart of calculus is to approximate the rate of change of a

function over a small interval h, and then take the limit as h tends to zero.

For a general function y= f(x) this procedure leads to the equation that

decorates the opening of this chapter, but using a general variable x instead

of time:

f 0ðxÞ¼ lim
h!0

f ðxþhÞ% f ðxÞ
h

In the numerator we see the change in f; the denominator is the change in

x. This equation defines the derivative f ¢(x) uniquely, provided the limit

exists. That has to be proved for any function under consideration: the

limit does exist for most of the standard functions – squares, cubes, higher

powers, logarithms, exponentials, trigonometric functions.

Nowhere in the calculation do we ever divide by zero, because we never

set h=0. Moreover, nothing here actually flows. What matters is the range

of values that h can assume, not how it moves through that range. So

Berkeley’s sarcastic characterisation is actually spot on. The limit L is the

ghost of the departed quantity – my h, Newton’s o. But the manner of the

quantity’s departure – approaching zero, not reaching it – leads to a perfectly

sensible and logically well-defined ghost.

Calculus now had a sound logical basis. It deserved, and acquired, a

new name to reflect its new status: analysis.

It is no more possible to list all the ways that calculus can be applied than

it is to list everything in the world that depends on using a screwdriver.

On a simple computational level, applications of calculus include finding

lengths of curves, areas of surfaces and complicated shapes, volumes of

solids, maximum and minimum values, and centres of mass. In

conjunction with the laws of mechanics, calculus tells us how to work
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out the trajectory of a space rocket, the stresses in rock at a subduction

zone that might produce an earthquake, the way a building will vibrate if

an earthquake hits, the way a car bounces up and down on its suspension,

the time it takes a bacterial infection to spread, the way a surgical wound

heals, and the forces that act on a suspension bridge in a high wind.

Many of these applications stem from the deep structure of Newton’s

laws: they are models of nature stated as differential equations. These are

equations involving derivatives of an unknown function, and techniques

from calculus are needed to solve them. I will say no more here, because

every chapter from Chapter 8 onwards involves calculus explicitly, mainly

in the guise of differential equations. The sole exception is Chapter 15 on

information theory, and even there other developments that I don’t

mention also involve calculus. Like the screwdriver, calculus is simply an

indispensable tool in the engineer’s and scientist’s toolkits. More than any

other mathematical technique, it has created the modern world.
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