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I. INTRODUCTION

Measuring the time dependence of the angular position of
a physical pendulum is a common task in an undergraduate
physics laboratory.1 To model the behavior of the pendulum,
students generally assume that the damping force is viscous
and proportional to the velocity of the pendulum. This model
produces a continuous function that can be compared to the
measurements. Although this model describes the data rea-
sonably well for a number of cycles, it often fails noticeably
as the pendulum slows down. Several authors have modeled
the time dependence assuming that the damping is due to a
dry friction force.2–6 This model produces a piece-wise con-
tinuous function, which probably accounts for its infrequent
use in an undergraduate laboratory. The purpose of this note
is to describe these two models and show how undergradu-
ates can use them to analyze the motion of a physical pen-
dulum.

II. EXPERIMENTAL METHOD

Figure 1 shows a familiar experimental setup that uses the
shaft of a rotational-type variable resistor as a pivot for the
pendulum.6–8 The damping is mostly due to the pivot in this
arrangement. The variable resistor serves as a transducer, re-
lating the angular position to the resistance. In general, the
latter is related to a voltage using a voltage divider. The
angular position of the pendulum can be determined from a
linear equation using measurements of transducer output for
angles of 0° and 90°. Any one of several commercial data
acquisition systems can be used to record the transducer volt-
age as a function of time.9 Measurements for the analyses
that follow were recorded with LabVIEW and a National
Instruments data acquisition system.

III. MODELS

A. Frictional torque proportional to velocity

We use Newton’s second law, the small angle approxima-
tion for sin �, and a frictional torque proportional to velocity,
and write the equation of motion for the pendulum as10,11

d2�

dt2
�

2

�

d�

dt
��2��0, �1�

where

���mgx

I
. �2�
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The total mass of the pendulum is m, g is the acceleration
due to the gravitational force, x is the distance from the cen-
ter of gravity to the axis of rotation, I is the moment of
inertia of the pendulum about the axis of rotation, � is the
damping constant, and � is the angular position of the pen-
dulum �see Fig. 1�. Equation �1� is solved by

���oe
�t/� cos �1t , �3�

where �o is the maximum angular position and �1

���1�1/�2�2. To compare Eq. �3� with experimental
measurements, initial values of �o and � were obtained by
visual inspection of the data and � was calculated from Eq.
�2�. Adjustments of the parameters were then made for com-
parison with the measurements �see Fig. 2�. Clearly, the am-
plitude of the motion falls off much more rapidly than Eq.
�3� predicts.

B. Constant frictional torque

The constant frictional torque can be modeled by
C sgn(d�/dt), where C is a friction parameter and sgn(x) is
the signum function defined as sgn(x)�1 for x�0, sgn(x)
�0 for x�0, and sgn(x)��1 for x�0. In terms of the
signum function, the equation of motion can be written as

d2�

dt2
��2���C sgn� d�

dt � . �4�

The homogeneous part of Eq. �4� is solved by

�� t ��A sin �t�B cos �t . �5�

Fig. 1. The experimental arrangement for the physical pendulum.
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If the pendulum is released from a positive angle �o , d�/dt
is negative for the first half period and sgn(d�/dt) also is
negative. The inhomogeneous part of Eq. �4� is solved by
�(t)�C/�2, making the complete solution �(t)�A sin �t
�B cos �t�C/�2. Satisfying the initial conditions of �
��o and d�/dt�0 at t�0 requires A�0 and
B��o�C/�2. The particular solution for the first half pe-
riod is then

�� t ��� �o�
C

�2� cos �t�
C

�2
. �6�

The same technique for each half period yields the general
result

�� t ��� �o��2n�1 �
C

�2� cos �t���1 �n
C

�2
�7�

for n�/�	t	(n�1)�/� and n�0,1,2,...
The period of the oscillations is unchanged in the constant

torque model so that the time for a half period is �/�. By
dividing each successive half period into several equal time
segments, the angular position as a function of time for each
half period can be calculated using Eq. �7�. Plots constructed
from a spreadsheet using �o�0.296 rad, C�0.0555 s�2,
and ��4.447 rad/s, and the experimental measurements are
displayed in Fig. 3. Clearly, the constant frictional torque
describes the damping much better than the velocity depen-
dent damping force.

IV. SUMMARY

A calculus-based physics course does not ordinarily dis-
cuss damped harmonic motion with a constant damping
force. Nevertheless, the model developed in this note is well
within the expertise of a student who is familiar with damped
harmonic motion and who has some experience with solving

Fig. 2. Comparison of experimental measurements �solid points� for the
physical pendulum with calculations �solid line� assuming a damping force
proportional to velocity.
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ordinary differential equations. Calculations can be per-
formed easily with a spreadsheet and compared with mea-
surements that have been taken with a data acquisition sys-
tem. Although we have applied the model to the motion of a
physical pendulum where the damping is due to sliding fric-
tion in a variable resistor, students can apply the model to
measurements made on other damped harmonic oscillators.
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Erratum: ‘‘Orbits of central force law potentials’’
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In the paragraph before Eq. �1� the expression ‘‘the
radial acceleration r̈�mv0

2/r0�r0�0
2’’ should be replaced

by ‘‘the only acceleration that is present is the centripetal
1081 Am. J. Phys. 73 �11�, November 2005 http://aapt.org/ajp
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acceleration ac�v0
2/r0�r0�0

2.’’ We are grateful to Martin
S. Tiersten and Dubravko Klabucar for pointing out this
error.
BIG BANG

Don’t speak to me, lightning: I’ll hide
where you can’t find me, under my bed,
as the hair on my arms rises, the dust-
bunnies cling; till you shake the floor, slow-voiced.

Astronomers stare. Their eyes are so big,
they can see so long ago. A cracked egg-
shell of heat-lightning frames the oldest sky
in all directions. Thunder, pass me by.

Lee Rudolph
Department of Mathematics
Clark University

‘‘Big Bang’’ will appear in
A Woman and a Man, Ice-Fishing
�Texas Review Press, 2005�,
winner of the 2004 X. J. Kennedy Poetry
Award.
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