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Students have difficulty in understanding friction and its associated phenomena. Introductory
university courses usually fail to give the topic the attention it deserves and to emphasize the crucial
role of friction in establishing mechanical equilibrium as motion ceases. We present an experimental
and a theoretical analysis of the periodic motion of a mass-spring system subject to static and kinetic
friction forces. Our analysis takes into account the effects of the static friction force on the final
mass position. © 2010 American Association of Physics Teachers.
�DOI: 10.1119/1.3471936�
I. INTRODUCTION

Students have difficulty in understanding friction
phenomena,1 and activities have been proposed to overcome
some of their main difficulties.2 The aim of this paper is to
provide an experimental and a theoretical analysis of the role
of static and kinetic friction in an oscillating mass-spring
system.

Previous papers have studied such systems
theoretically.3–9 In this paper, we use an integrated approach
to relate analytical and numerical solutions to the experimen-
tal results and observations obtained by students. Students
can observe the strong dependence of the final position of a
block on the initial conditions and recognize the linear decay
of oscillations from graphs obtained using motion sensors.
The interpretation of these experimental results motivates the
theoretical analysis of the system at various levels. As a re-
sult of this analysis, students develop an understanding of
how static and kinetic friction forces act and how the cessa-
tion of motion is due to the interplay of the two forces. The
experiments have been tested with groups of volunteer high
school students as part of a collaborative program involving
our department and the regional school district.

II. DAMPING AND STOPPING: THE DOUBLE ROLE
OF KINETIC AND STATIC FRICTION FORCES

A mass-spring system with mass m and spring constant k
is constrained to oscillate on an inclined plane �inclined at
the angle �� in the presence of static and kinetic friction
forces, Fs and Fk, respectively. The magnitude of the kinetic
friction force is

�Fk� = sign�ẋ��k�N� , �1�

where N is the normal force and sign�ẋ� denotes the sign
function that takes into account the dependence of the kinetic
friction force on the direction of the velocity.

If the forces are projected onto an axis parallel to the plane
of oscillation and pointed downward �see Fig. 1�, Newton’s

law can be written as
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mẍ = − k�x − x̄� − sign�ẋ��kmg cos � + mg sin � , �2�

where �k is the kinetic friction coefficient, x̄ defines the po-
sition of the mass when the spring is in its relaxed state, and
mg is the magnitude of the gravitational force. Although the
magnitudes of the normal and tangential components of the
gravitational force are constant, Eq. �2� highlights the peri-
odic alternation of the direction of the dynamic friction force
after each half period of motion T /2=��m /k. The position
of the mass where the spring restoring force counterbalances
the tangential component of the weight is xg=mg sin � /k
+ x̄. Thus, in the absence of friction, xg represents the center
of oscillation and the position of stable equilibrium where
the mass remains at rest.

If we assume xg=0 and let x0�0 represent the initial po-
sition of the mass �ẋ0=0�, we find according to Eq. �2� that
the condition necessary for motion is �Fspring�� �Fs�, that is,

k�x0� � �smg cos � . �3�

This condition allows us to determine the range for which
the static friction force exceeds the elastic force, a region
corresponding to the positions x0� �−xs ,+xs� with xs

=�smg cos � /k.
If �x0��xs, oscillatory motion is governed by Eq. �2�. Sup-

pose that x0�xs�0. In the first half period, Eq. �2� has the
form

mẍ = − k�x − x̄� + �kmg cos � + mg sin � , �4�

where both the magnitude and the direction of the kinetic
friction force are constant in time, and the latter points down-
ward, that is, opposite to the upward direction of the velocity.
The solution is

x�t� = �x0 − xc�cos��t� + xc, �5�

with �=2� /T and xc=�kmg cos � /k. Due to the presence of
the constant kinetic friction force, xc is the position where the
net force on the mass is zero, that is, xc is the center of
motion of the first half oscillation. The position where
˙
x�T /2�=0 can be calculated from Eq. �5�,
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x1 = − x0 + 2xc. �6�

If we assume �x1��xs, there is a change in the direction of
the velocity in the next half period and, consequently, in the
direction of the kinetic friction force. Thus, the solution of
Eq. �2� becomes

x�t� = �x1 + xc�cos��t� − xc, �7�

where −xc is the new oscillation center, which is symmetrical
with respect to xg. The position of the mass after one period
is then

x2 = − x1 − 2xc = x0 − 4xc. �8�

The nth-amplitude at the nth-half period is

xn = ��− 1�n�x0 − 2nxc� if x0 � xs � 0

�− 1�n�x0 + 2nxc� if x0 � − xs � 0.
� �9�

Equation �9� demonstrates that the damping of the amplitude
is linear, according to the condition that �xn�− �xn−1�=−2xc
after each half cycle. Equation �9� allows us to derive a con-
straint on n, where n is an integer representing the number of
half oscillations completed by the mass before it comes to
rest.

We next discuss the case for which the initial position is
located in a region where the elastic force exceeds the static
friction force. We assume that �x0��xs. The mass comes to
rest at xn after completing nth-half oscillations, that is,

�xn� � xs and �xn−1� � xs. �10�

From Eq. �10� together with Eq. �9�, we can deduce the
constraint on n,

1

2

�x0� − xs

xc
� n �

1

2

�x0� − xs

xc
+ 1. �11�

It is thus possible to quantify the dependence of the final
position xn on the initial position x0 �with ẋ0=0�. A plot of xn
versus x0 is given in Fig. 2. The plot is divided into regions
corresponding to different numbers of half oscillations com-
pleted by the mass before it comes to rest.

If −xs�x0�xs, the mass does not oscillate. This central
region represents the static region of stable equilibrium
where the final position xn coincides with x0. The two re-
gions corresponding to n=1 of width 2xc represent the range
of final positions after one half oscillation. We can estimate
both the static and dynamic friction coefficients for a given
system by determining the gap 2xs−2xc between the two

Fig. 1. The mass-spring system. The kinetic friction force and velocity are
sketched to show the dependence of the direction of the friction force on the
direction of the velocity.
slanted lines in Fig. 2, together with the value of the ratio,
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xc

xs
=

�k

�s
. �12�

III. THE EXPERIMENTAL APPROACH

The experimental mass-spring system consists of a block
with four small plastic supports underneath. The block is
attached to a spring fixed at the top of an inclined melanine-
coated wooden plane �see Fig. 1�. It is possible to use other
materials for the block and plane. Some constraints should
be taken into account in the choice of materials. If the kinetic
friction is too large, few oscillations occur and linear damp-
ing is not evident. Also if the static friction is too small, the
range in which the static friction force exceeds the elastic
force �static region� is greatly reduced and a measurement of
the final versus initial position would require too much pre-
cision. If the kinetic friction is too small, the effects of vis-
cous friction cannot be disregarded. In practice, we have
found that a good set of parameters includes kinetic friction
coefficient �k	0.25, static friction coefficient �s��k, and
inclination angle �	1.4 rad.

A. Evaluating the parameters of the system: A
measurement of the static and kinetic friction coefficients

We first describe how to measure the friction coefficients
of the block-spring system. Because the direction of the ki-
netic friction force depends on the direction of the velocity,
the kinetic friction coefficient �k can be evaluated by mea-
suring the difference between the ascending and the descend-
ing accelerations aa and ad. From Newton’s equations, we
can write

aa = g sin � + �kg cos � �va � 0� , �13�

ad = g sin � − �kg cos � �vd � 0� . �14�

Fig. 2. The final block position xn for different initial positions x0 of a
damped harmonic oscillator in the presence of both static and sliding friction
forces. Regions corresponding to different integer numbers n of half oscil-
lations are highlighted by vertical dashed lines. The gap 2xs−2xc between
the black lines together with the value of xc /xs allows the static and the
dynamic friction coefficients to be estimated. The slope of the lines is 1.
Therefore,
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�k =
aa − ad

aa + ad
tan � . �15�

The block is pushed from the bottom to the top of the in-
clined wooden plane and the upward and downward motions
are registered by a motion sensor placed at the top of the
plane, as shown in Fig. 3�a�. The sensor is connected to the
computer by a Pasco interface and uses DATASTUDIO
software.10

Measurements of the position and velocity versus time are
shown in Fig. 4. The motion consists of two uniformly ac-
celerated motions �the upward and downward� with different
accelerations. From Eq. �15�, we obtain the value of the ki-
netic friction coefficient �k,

�k = 0.25 	 0.03. �16�

To determine the value of the static friction coefficient �s,
we measure the maximum value of the static friction force Fs
for various values of the normal force. We vary the normal
force by adding known masses on the top of the block. We
employ both a force and a motion sensor, as shown in Fig.
3�b�. Figure 5 shows the various values of �mg cos � ,Fs� that
were collected.

The linear relation between the normal force mg cos � and
the static friction force Fs allows us to estimate the value of
�s by the statistical interpolation of the experimental data.
We find that

�s = 0.32 	 0.01. �17�

From our previous results, we obtain

�k = 0.8 	 0.1. �18�

Fig. 3. �a� Experimental approach to estimate the dynamic friction coefficien
motion of the block. Measurements are performed by placing the wooden p
are used.
�s
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B. Damping due to the kinetic friction force

To study the motion of the spring-block system, we choose
an appropriate inclination angle so that the system will per-
form a sufficient number of oscillations �in our case �
	1.4 rad�. We choose the initial position x0 �with ẋ0=0�
outside the static region and record the position of the block
by means of a motion sensor placed at the bottom of the
inclined wooden plane �see Fig. 6�a��.

Figure 6 shows a plot of position versus time; in Fig. 6�b�
two centers of oscillation are evident, which are symmetrical
with respect to xg=1 m. If we assume xg is the origin of the
coordinate system, then the two centers of oscillation are at
xc
 	0.013 m. According to the relation xc
=�kmg cos � /k, this value of xc corresponds to a value of
�k
0.25	0.05. The experimentally determined amplitude
decay is consistent with Eq. �9�; that is, in each half cycle,
�xn�
�xn−1�−2xc. It is also possible to verify that the number
of half oscillations before the system comes to rest is consis-
tent with the theoretical predictions. For example, if we
choose x0	−0.15 m, six half oscillations occur before mo-
tion ceases. This value corresponds to the result derived from
Eq. �11�, that is, to the first integer number in the range 5.1
�n�6.1, where Eqs. �12� and �18� have been used to deter-
mine the value of xs. According to Eq. �9�, motion should
cease at the position corresponding to n=6, that is, at x6
	0.006 m, which agrees with the experimental results �see
Fig. 6�b��.

It is also possible to compare the theoretical results shown
in Fig. 2 with the experimental values. To this end, the mo-
tion sensor was used to record several sets of initial and final
position data. For these measurements, the angle of the in-
clined wooden plane was reduced to �	1 rad to obtain

�b� Measurement of the threshold value of the force needed to produce the
horizontally. Both a force sensor attached to the block and a motion sensor
t �k.
lane
larger values of xs and xc. We increased the number of ex-
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by the software.
perimental points to compare with the theoretical predictions
in Fig. 2. The results are shown in Fig. 7. The qualitative
agreement with Fig. 2 is very good. Two discontinuous lines
appear, representing two regions of x0 values. In the first
region, the block is unable to oscillate �the static region of
stable equilibrium positions�; in the second region, it is able
to complete one-half of an oscillation.

In Fig. 7 we can also see the range of x0 values for which
the block can complete the second half of the oscillation. The
slope obtained by the linear fit of the data in the n=1 region
agrees with the predicted value. The measured values of xc
and xs are xs=0.049	0.002 m and xc=0.043	0.002 m.
From Eq. �12�, we have xc /xs=�k /�s=0.9	0.1, which is
consistent with the value calculated in Eq. �18�.

A detailed comparison between the predictions and the
experimental results can also be done using the phase space
representation. Figure 8�a� shows the velocity versus the po-
sition of the oscillator calculated in the presence of both
static and kinetic friction forces. Continuous vertical lines at
	xc identify the positions of both symmetrical centers of the

Fig. 4. Measurements of the �a� position and �b� velocity of the block during
of the inclined wooden plane, and a motion sensor records its position and ve
lines� in the velocity versus time plot allow us to obtain the mean accelerati
experimental errors present in the acceleration versus time graphs obtained
upward and downward motion. The block is pushed from the bottom to the top
locity. The sensor is placed at the top. The linear interpolating curves �continuous
on in each part of motion from the fit parameters. This method reduces the large
oscillatory motion. According to Eqs. �5� and �7�, for each

1123 Am. J. Phys., Vol. 78, No. 11, November 2010
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Fig. 5. Static friction coefficient �s estimated from the linear relation be-
tween mg cos � and Fs defined as the threshold force value before the mo-
tion starts. The values of �s and �k are obtained by the statistical interpo-

lation of the experimental data.
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half oscillation of duration T /2, 	xc represents the center of
the nth-half oscillation, depending on the sign of xn−1 corre-
sponding to zero velocity. The other vertical lines at 	xs
mark the limits of the static region, that is, the region where
the static friction force exceeds the elastic force. Figure 8�b�
contains a comparison of theory with experiment. The points
represent the experimental phase space diagram �obtained
with DATASTUDIO�. The dashed black line represents the the-

Fig. 6. �a� The apparatus for obtaining periodic damped motion consists of
the bottom. Four small plastic supports are placed beneath the block. �b� Pos
a kinetic friction force. Continuous tilted lines show the linear amplitude

 	0.013 m symmetrical with respect to the position xg=1 m for each hal
six half oscillations at x6
0.006 m.

Fig. 7. The final position xn versus the initial position x0 in the presence of
static and kinetic friction forces. Both positions are recorded by the motion
sensor at the bottom of the inclined wooden plane. Regions corresponding to
different integer number n of half oscillations are separated by vertical lines.
Experimental points are placed on two discontinuous lines as highlighted by
a linear fit in the region of n=1; the slope is close to 1, as expected. The
values obtained for the width of the first two regions are 2xs
=0.098	0.004 m and 2xc=0.086	0.004 m.

1124 Am. J. Phys., Vol. 78, No. 11, November 2010
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oretical phase space diagram with the same set of friction
parameters as the experimental system. All six half oscilla-
tions are clearly visible, and there is good agreement be-
tween the experimental and the numerical data �see Fig. 6�b�
for a more detailed comparison�.

C. Using the experiments with students

The experiments were performed by groups of selected
high school students involved in The Undergraduate Degrees
in Science Project �Progetto Lauree Scientifiche�, whose goal
is to attract students to study science at the university level.
The students did the experimental activities in groups of
three or four and completed the experimental work in two
sessions of 2 h each. They had previously performed labora-
tory work in mechanics and were capable of operating the
microcomputer-based laboratory sensors. The students inves-
tigated the motion of a wooden block along an inclined plane
by focusing on the effects of the kinetic friction force. They
also measured the kinetic friction coefficient as reported in
Sec. III A. The students subsequently studied the motion of
the spring-block system on an inclined wooden plane. They
were first asked to predict the nature of a plot of the motion
of an undamped oscillator in the t, x, t, v, and x, v planes.
Then the experiment described in Sec. III was carried out,
and students compared their experimental results to their pre-
dictions. Most of the students identified the kinetic friction
force as the main cause of damping. A measurement �and a
t ,x graph� of the middle points of each half oscillation, cor-
responding to the upward and downward motions, allowed
the students to identify the presence of two centers of oscil-
lation. This analysis was very effective in helping students
understand the role of kinetic friction in determining the shift

k-spring system placed on a inclined wooden plane and a motion sensor at
versus time for a damped harmonic oscillator in the presence of a static and
y. Continuous horizontal lines highlight the presence of two centers at xc

iod depending on the direction of the motion. Oscillatory motion ends after
a bloc
ition
deca
f per
of the center of oscillation. Then the range of positions cor-
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ted li
responding to the static region was measured, the linear
damping of oscillations observed, and a detailed measure-
ment of the final versus initial positions performed. The ex-
perimental results were discussed on the basis of the model
according to which each half oscillation must have a center
of symmetry. This model implies that two different centers of
oscillations are obtained for upward and downward oscilla-
tions. The analysis led students to understand how static and
kinetic friction forces act alternatively and how the cessation
of the motion is due to the interplay of the two forces.

D. Using a numerical simulation

A numerical simulation based on the evaluation of the
mass-spring system energy at each time step4 can be useful
to extend the experimental observations and to confirm the
role of the static friction force in stopping the motion and the
presence of two oscillation centers. If the students are di-
rectly involved in creating the simulation, they can explore
the system using the point of view of energy as discussed in
the Appendix. Students can also take advantage of the pre-
written code to explore the simulated system and can quickly
change the parameters to see the effect on the main physical
quantities involved in the mass-spring system. The logical
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IV. SUMMARY

We have proposed an approach for understanding the be-
havior of a harmonic oscillator in the presence of static and
kinetic friction forces. The use of motion and force sensors
makes the experimental analysis of a damped oscillator ac-
cessible to undergraduate and even to high school students.
By using the experimental results as a starting point, the
theoretical analysis can be discussed at a level of sophistica-
tion appropriate to the background of the students. For uni-
versity students, it is advisable to combine experimental,
analytical, and numerical approaches. In this way, we can
explain a variety of observed phenomena. For example, the
presence of two centers of oscillation can be explained as
due to the periodic switch in the direction of the kinetic
friction force after each half period, and the linear amplitude
damping can be related to the magnitude of the kinetic fric-
tion force. A quantitative analysis of a plot of the final versus
initial positions allows a direct estimate of the ratio of the
friction coefficients of the block on the wooden plane.
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APPENDIX: PROGRAM

The code was written in FORTRAN and MATHEMATICA. The
initial position x0 and an initial zero velocity v0=0 are cho-
sen together with the parameters �s, �k, �, and �2. The step
size 
x is also chosen. The elastic spring force is compared
to the static friction force to determine if mass oscillatory
motion can begin. In the presence of motion, the subsequent
position x1 is related to the previous one by x1=x0	
x,
depending on the velocity direction. Then the velocity v1 is
evaluated by taking into account the work done by the ki-
netic friction force. If v1

2�0, the updates of x and v are
repeated until the velocity goes to zero, which is the first
time the maximum amplitude is reached. This position be-
comes the new initial position. If, between the jth and the
�j+1�th time steps, we find v j+1

2 �0, then the spatial reso-
lution is increased until zero velocity is reached with the
desired precision.

As a test of the program we compared our results with
those obtained in Ref. 4. Figure 8�c� shows the ratio xn /x0 for
different initial positions �in particular, 0�x0 /xc�20� as a
function of xc /x0 for xs /xc=1. Each straight line from right to
left corresponds to a number of half oscillations increasing
from 1 to 10. �For 0.3�xc /x0�0.5 shown in Fig. 8�c�, one

half oscillation was completed.� The first straight line �start-
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ing from the right� corresponds to one half oscillation, the
second to two half oscillations, and so on; Fig. 8�d� shows
the case xs /xc=2. Each straight line in Fig. 8�d� has the same
slope as in Fig. 8�c�, but is shifted upward or downward
according to the number of half oscillations. This shift occurs
due to the formation of a gap 2xs−2xc, as shown in Fig. 2.
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The Block and Spring on an Inclined Plane model in the OSP ComPADRE Collection shows the dynamics of a
mass-spring system sliding on an inclined plane with static and kinetic friction. It is a supplemental simulation for
the article by P. Onorato, D. Mascoli, and A. DeAmbrosis and has been approved by the authors and the AJP editor.
The model displays the numerical solution to the equation of motion and shows how the forces change as the mass
slides. Users can set the coefficients of friction and the spring constant. The model plots the position, velocity, and
net force on the mass as a function of time as the system evolves and shows the asymmetry caused by the change
in direction of the frictional force when sliding up and down the incline and the importance of friction in estab-
lishing equilibrium. The simulation can be found at http://www.compadre.org/OSP/items/detail.cfm?ID�10081.

Partial funding for the development of this model was obtained through NSF Grant No. DUE-0937731.
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