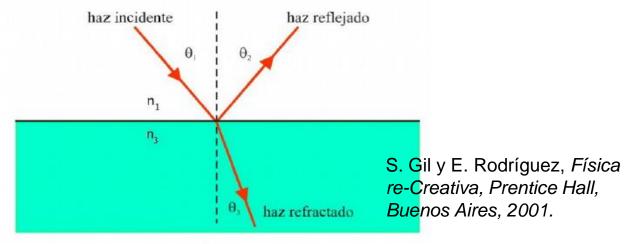


Clase 08: Óptica

Laboratorio de física 1 para químicos 1er cuatrimestre 2022

1) Explicación teórica:


Ley de Snell

- •Cuando un haz de luz incide sobre la superficie que separa dos medios, en los cuales la luz se propaga con diferentes velocidades, parte de la misma se transmite y parte se refleja.
- •Para un medio cualquiera, el índice de refracción n se define como n=c/v, donde c es la velocidad de la luz en el vacío y v la velocidad de la luz en el medio.
- •La ley de Snell establece que la relación entre el ángulo incidente (θ 1) y el refractado (θ 3) es:

$$n_1 \sin(\theta_1) = n_3 \sin(\theta_3) \quad (1)$$

- •Donde n_1 es el índice correspondiente al medio por donde incide el rayo y n_3 el medio por el cual se transmite el rayo.
- •Similarmente la ley establece que para el ángulo del rayo reflejado θ_2 nos queda $\theta_1 = \theta_2$.

Diagrama de rayos incidente, reflejado y refractado:

epartamento de Física

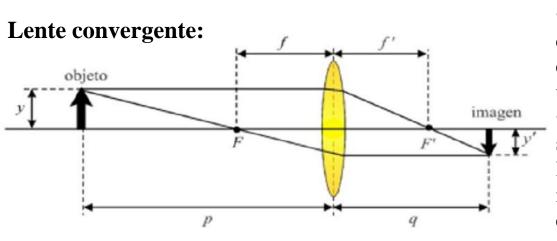
1) Explicación teórica:

Lentes delgadas

•En una lente delgada se cumple la ecuación del constructor de lentes:

$$\binom{n_m}{p} + \binom{n_m}{q} = (n_l - n_m)(R_1^{-1} - R_2^{-1})$$

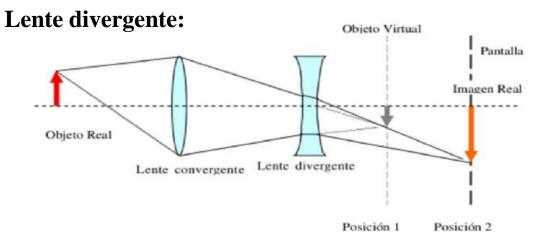
- •donde p es la distancia objeto-lente, q es la distancia pantalla-lente, n_m y n_l los índices de refracción del medio y la lente respectivamente y R1 y R2 los radios de las dioptras que componen la lente.
- •Esta ecuación se puede reescribir en la forma de la ecuación de Gauss


$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \tag{2}$$

•donde f es la distancia focal de la lente y no sólo depende de la construcción de la lente, sino también del medio donde esta sumergida.

1) Explicación teórica:

Lentes convergentes y divergentes

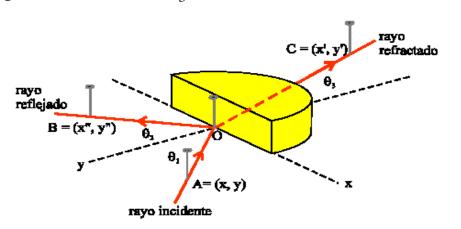

•En las figuras 1 y 2 se observa el esquema experimental para una lente convergente y divergente, respectivamente:

•Una de la propiedades de las lentes convergentes es que forman imágenes reales, es decir, imágenes que pueden proyectarse en una pantalla.

departamento de física

• El foco de una lente convergente es el punto sobre el eje óptico a una distancia f de la lente, donde convergen todos los rayos incidentes paraxiales (paralelos y cercanos al eje) luego de la refracción

•Las lentes divergentes son más delgadas en el centro de la periferia y dan imágenes virtuales de objetos reales (cualquiera sea la posición de éstos)


2) Experimento

Objetivos:

- -Estudiar experimentalmente las leyes de reflexión y refracción de la luz, determinar el índice de refracción de un material usando la **ley de Snell** y observar el fenómeno de reflexión total interna (demostración).
- -Realizar un estudio **cuantitativo** de una lente **convergente**.

Actividad 1: Estudio de la reflexión y refracción

- a)Para este experimento se usa una media caña acrílica en forma de "D" que será el medio a estudiar, un puntero láser, alfileres y un telgopor con una base graduada. (ver figura).
- b)Armar el arreglo experimental, colocando el acrílico sobre la hoja graduada con valores de ángulos. Marcar bien el eje y prender el puntero en el medio 1 (aire) determinando el ángulo de incidencia θ_1 . Visualizar donde sale el haz luego de pasar por el acrílico y marcar con un alfiler el ángulo transmitido θ_3 .

.IMPORTANTE! Tener cuidado de que el haz del puntero no de a los ojos de lxs observadorxs, por eso ver siempre el haz desde arriba y NUNCA al nivel del haz. Una vez que se pone el alfiler para marcar el ángulo transmitido, apagar el haz.

lepartamento de l'ísica

S. Gil y E. Rodríguez, Física re-Creativa, Prentice Hall, Buenos Aires, 2001.

2) Experimento

- departamento de Rísica universidad de buenos aires - exactas Juan José Giambiagi
- c) Repetir el experimento para distintos θ_1 y medir los θ_3 .
- d) Graficar sen θ_1 vs sen θ_3 . ¿Qué se obtiene de la pendiente? Comparar el valor obtenido con el valor de tabla. Ayuda: usar la Ley de Snell. Recordar que $n_1 = 1$ (aire). ¿Cómo se estima las incertezas en estas mediciones?

Actividad 2: Reflexión total interna.

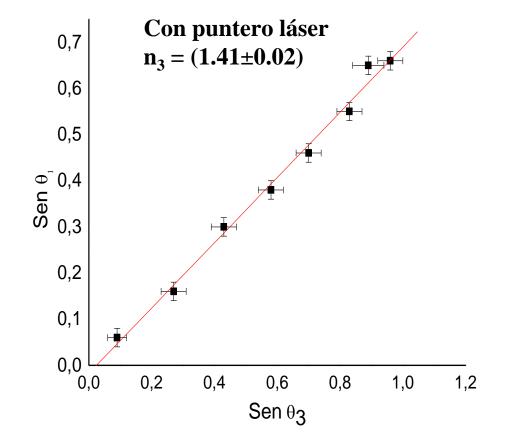
a) Buscar el ángulo crítico para el cuál no hay haz transmitido. Se hará una demostración sobre este fenómeno.

2) Experimento

Actividad 3: Lentes convergentes

- a)Armar el experimento para una lente convergente (ver figura en la diapositiva 4).
- b) Para diversas distancias objeto—pantalla, encontrar todas las imágenes que se pueda variando la posición de la lente. ¿Para cuántas posiciones de la lente ve imágenes nítidas en la pantalla? Cada vez que se observe imágenes nítidas, **medir** las distancias p, q y los tamaños y orientaciones del objeto y su imagen.
- c) Representar q en función de p y q -1 en función de p -1 . ¿Qué relación hay entre q y p? Ayuda: ver ecuación de Gauss.
- d) Estimar el valor de la distancia f. ¿Cómo se puede estimar las incertidumbres de p y q?
- e) Se define el **aumento lateral "m"** como el cociente entre el tamaño de la imagen y el tamaño del objeto. Determinar experimentalmente el aumento de la imagen que resulta para distintas posiciones relativas entre objeto y lente.
- f) Representar gráficamente m en función del cociente q/p.

Observación: Sólo se forma la imagen de un objeto sobre una pantalla cuando la distancia objeto—pantalla, D = p + q, cumple la condición D > 4 f.


departamento de Física

¡A medir!

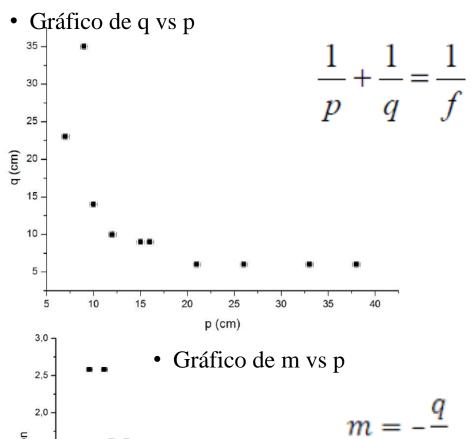
3) Resultados y análisis

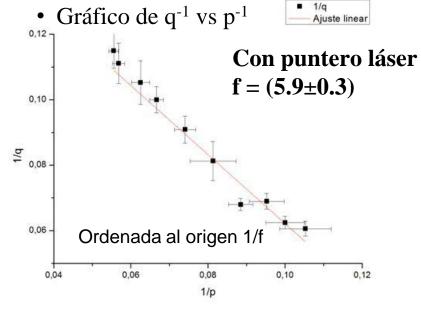
Actividad 1: Ley de Snell

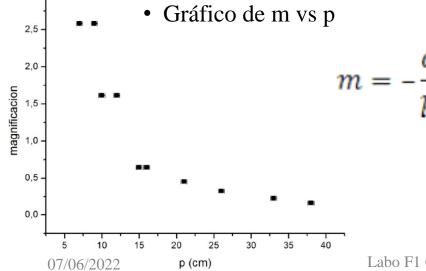
Actividad 2: Reflexión total interna

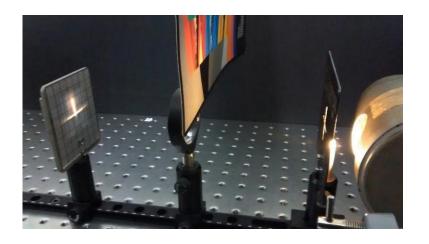
Total Internal Reflection in Water "Bucket of Light"

https://www.youtube.com/watch?v=XrWB0KLXpn 8&feature=youtu.be




https://www.youtube.com/watch?v=0MwMkBE T_5I


3) Resultados y análisis


Actividad 3: Análisis cuantitativo de lente convergente

