Laboratorio de física 1 Verano 2024

Quienes somos: Vero (Pérez Schuster) Eze (Zubieta) Fer (Giovanetti) iv ustedes!

PRESENTACIONES,

SEQUIGEN

¿Dónde encuentro info de la materia?

<u>página del departamento</u> pestaña laboratorios → aún en contrucción

¿Qué recursos vamos a usar?

- google colab: https://colab.research.google.com/
- Páginas sensores https://www.vernier.com/product/sensordag/
- tracker: https://physlets.org/tracker/
- y algunos mas...

Reglas de cursada

La cursada del laboratorio será obligatoria. El día de la clase se darán las explicaciones específicas y se realizarán los experimentos.

El trabajo es grupal. Todas las personas que integran el grupo tienen que poder reproducir el trabajo realizado en clase.

Los informes son grupales, se entregan impresos y en las fechas acordadas según cronograma. No entregar informe en fecha equivale a una inasistencia para todas las personas del grupo.

El celular no puede ser utilizado durante las explicaciones en el pizarrón.

Reglas de cursada

Régimen de aprobación: Para aprobar el laboratorio de la materia las/os alumnas/os deben cumplir con los siguientes requisitos:

- Realizar todas las prácticas y aprobar los correspondientes informes
- Las y los estudiantes pueden faltar un máximo de dos veces. En caso de falta se tendrán que presentar el día de recuperación.
- Dos llegadas tarde (20 minutos) equivalen a una falta

Evaluación (notal final del laboratorio)

Trabajo en clase

Cuaderno de laboratorio

Informes y reportes

Charla/ Exposición grupal al final de la cursada

Cronograma (preeliminar)

Fecha	Laboratorio	Tipo de evaluación	Fecha límite de entrega	Devolución
29/1	Clase Introductoria			
31/1	Guia 1 – Estadística, mediciones directas	Reporte	5/2	7/2
5/2	Guia 2 – Mediciones Indirectas	Reporte		
7/2	Guia 3 - Cuadrados mínimos-Caida Libre			
12/2	FERIADO			
14/2	Guia 3 – Cuadrados mínimos-Péndulo	Reporte+		
19/2	Guia 4 – Oscilador Simple y Amortiguado	X2		
21/2	Guia 4 – Oscilador Simple y Amortiguado	INFORME		
23/2	PRIMER PARCIAL			
26/2	Guia 5- Conservación de Impulso	INFORME		
28/2	Recuperación			
4/3	Guia 6 – Velocidad Límite	Resultados		
6/3	Guia 7 – Optica Snell	Resultados		65
11/3	Presentacion Oral/cierre Materia			
13/3	Recuperación			
15/3	SEGUNDO PARCIAL			

Seguridad en el laboratorio

Videos de Seguridad e Higiene

Material en la página de la materia

Clase que viene→ firman planilla

¿Qué vamos a aprender?

- A realizar trabajo experimental de forma sistemática
- A medir, analizar
- A registrar resultados
- A reportar resultados
- Trabajo en equipo

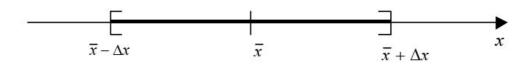
Antes de cada práctica/clase

- ¿Qué datos aporta?
- ¿Qué conocimientos previos exige?
- ¿Qué novedad experimental representa?
- ¿Cómo tengo que asociarlo con las experiencias que ya poseo sobre el mismo contenido?
- ¿Cómo hago para llevarlo a la práctica?
- Usar conceptos universales o leyes. La reflexión es la base del estudio en esta materia, en la que lo fundamental es pensar de manera ordenada, con lógica, punto por punto. La memoria no es suficiente.

¿Qué es medir?

Determinar cuantitativamente el valor de magnitudes físicas relacionadas a un cuerpo, proceso o fenómeno físico

Se compara el objeto/proceso a medir con un patrón


Instrumento de medición – Método de medición – Unidad de medición

¡La persona que realiza la medición es parte del proceso!

Expresando resultados

Una medición NO arroja un número exacto sino un intervalo en el que cae el valor real

Definimos un valor central y una incerteza asociada

Fuentes de error: instrumental, interacción, sistemático, estadístico, lo vamos a ir aprendiendo durante la materia.

Cifras significativas-criterios

- a) Ceros a la izquierda NO son cifras significativas
- b) Ceros entre dígitos son cifras significativas
- c) Ceros a la derecha son cifras significativas

Vamos a reportar:

- 1 sola cifra significativa en el error
- Misma cantidad de dígitos en el valor central

¡Ver <u>apunte</u> en página de la materia!

Convención:

- Sistema Internacional de unidades:
 https://www.inti.gob.ar/areas/metrologia-v-calidad/si
- símbolos para cantidades de variables: itálicas; m (masa), A (área)
- símbolos para unidades: romana (común): m (metros),
 A (Amper)

Ejemplo: si el lado de una figura geométrica mide entre 45 y 46 cm un resultado posible expresado correctamente es: $I = (45,09 \pm 0,07)$ cm

Cifras significativas

¿Con cuántas cifras reportamos nuestro resultado?

$$g = (9,78935 \pm 0,02336) \text{ m/s}^2 \text{ o } g = (9,79 \pm 0,02) \text{ m/s}^2$$
?

Cifras significativas

¿Con cuántas cifras reportamos nuestro resultado?

$$g = (9,78935 \pm 0,02336) \text{ m/s}^2 \text{ o } g = (9,79 \pm 0,02) \text{ m/s}^2$$
?

Reportando resultados

- 1) Una sola cifra significativa en el error
- 2) Misma cantidad de dígitos en el valor central

Ejemplo:

T= 43,2344s y
$$\Delta$$
T=0,2131s
⇒ 1) Δ T=0,2 s

$$2) T = 43,2 s$$

Incertezas

$$x = (x_0 \pm \epsilon) \text{ unidad}$$

$$\epsilon^2 = \epsilon_{inst}^2 + \epsilon_{est}^2 + \epsilon_{sist}^2$$

Sistemáticas

- Causadas por imperfecciones en los instrumentos de medida (reloj que atrasa o adelanta), el método experimental o por el observador.
- Tienden a desviar el valor de una medida en una sola dirección (dan valores siempre mayores o siempre menores que el valor verdadero).

Estadísticas (causal o aleatoria)

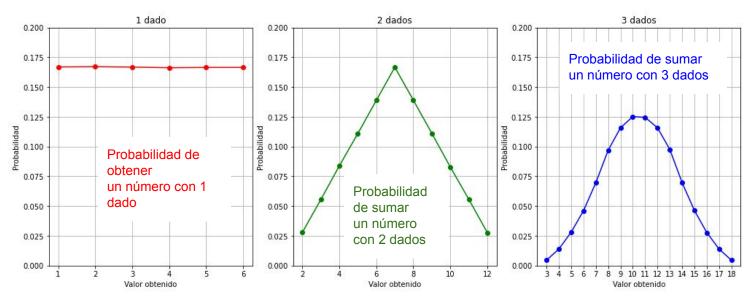
- Se producen al azar, por causas no controladas o desconocidas.
- Repito una medición varias veces (con el mismo instrumento y en las mismas condiciones) y los resultados no siempre se repiten.
- Estos errores pueden cometerse con igual probabilidad por defecto

Incertezas

$$x = (x_0 \pm \epsilon) \text{ unidad}$$

$$\epsilon^2 = \epsilon_{inst}^2 + \epsilon_{est}^2 + \epsilon_{sist}^2$$

Sistemáticas


- Causadas por imperfecciones en los instrumentos de medida (reloj que atrasa o adelanta), el método experimental o por el observador.
- Tienden a desviar el valor de una medida en una sola dirección (dan valores siempre mayores o siempre menores que el valor verdadero).

Estadísticas (causal o aleatoria)

- Se producen al azar, por causas no controladas o desconocidas.
- Repito una medición varias veces (con el mismo instrumento y en las mismas condiciones) y los resultados no siempre se repiten.
- Estos errores pueden cometerse con igual probabilidad por defecto

Probabilidad

La probabilidad de que ocurra un evento es un número entre 0 y 1 (0 y 100%)

Cada variable aleatoria tiene su propia distribución de probabilidad

Mediciones con fluctuaciones aleatorias:

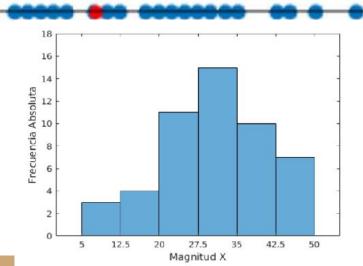
Variable aleatoria: Resultado que no se reproduce al repetir el experimento:

- Por naturaleza de la variable que se mide
- Por el proceso de medición

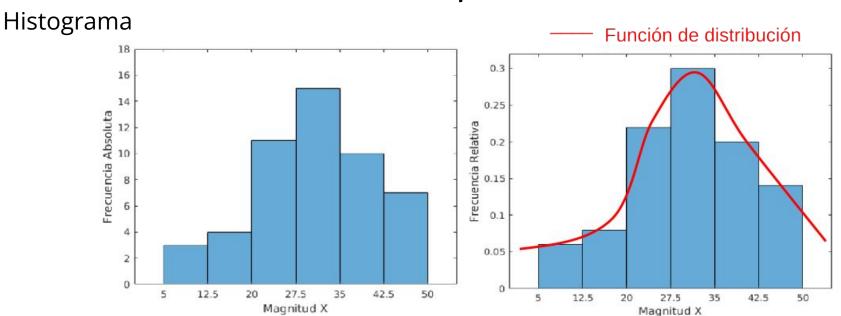
Ejemplo:

Se mide N veces (50) la magnitud X. Se obtienen los siguientes resultados: X = {37; 31; 39; 28; 45; 35; 25; 28; 27; 32; 27; 34; 47; 39; 38; 21; 24; 32; 28; 13; 14; 40; 22; 50; 7; 34; 30; 22; 34; 22; 38; 30; 13; 5; 27; 41; 31; 30; 36; 16; 44; 21;30; 26; 31; 10; 45; 35; 50; 44}

- ¿Qué puede decirse de la medición #51? ¿Qué tan cerca/lejos estará del promedio?
- Y si se mide de nuevo 50 veces, ¿cuál será el promedio?


Debemos analizar la distribución

Mediciones continuas con fluctuaciones aleatorias:


Histograma

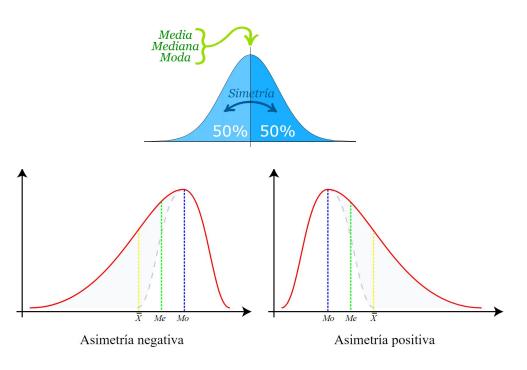
- 1) Se divide al eje x en n intervalos (bins) iguales
- 2) Se cuenta cuántas mediciones caen en cada bin (frecuencia)

Frecuencia
3
4
11
15
10
7

Mediciones continuas con fluctuaciones aleatorias:

- -Frecuencia o frecuencia absoluta: cantidad de datos en cada intervalo
- -Frecuencia relativa: frecuencia absoluta / total de datos (N)

Valores representativos

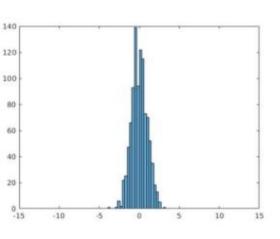

Moda: Valor más frecuente

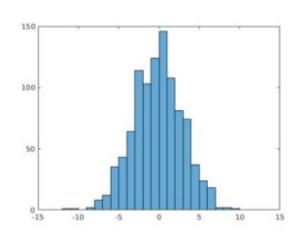
$$ar{x} = rac{1}{N} \sum_{i}^{N} x_i$$

Media: Promedio de los datos

Mediana: Valor que queda en el medio de los datos (ordenados de menor a mayor)

Valores representativos

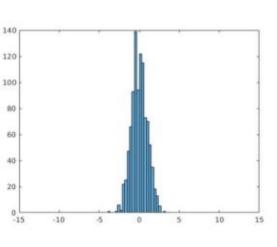

Media: Promedio de los datos

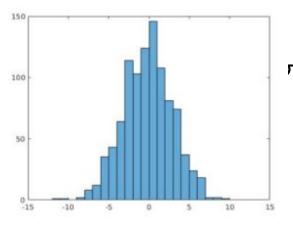

$$ar{x} = rac{1}{N} \sum_i^N x_i$$

Moda: Valor más frecuente

Mediana: Valor que queda en el medio de los datos (ordenados de menor a mayor)

Dispersión


<u>Varianza:</u> distancia cuadrática media de los datos al valor medio


$$\sigma^2 = rac{1}{N-1} \sum_i^N \left(x_i - ar{x}
ight)^2$$

<u>Desvío Standard:</u> raíz de la varianza

$$\sigma = \sqrt{rac{1}{N-1} \sum_i^N \left(x_i - ar{x}
ight)^2}$$

Dispersión

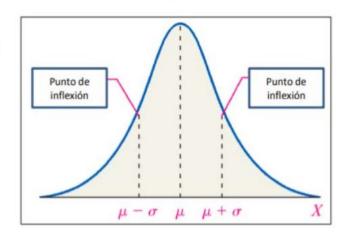
<u>Varianza:</u> distancia cuadrática media de los datos al valor medio

$$au^2 = rac{1}{N-1} \sum_i^N \left(x_i - ar{x}
ight)^2$$

<u>Desvío Standard:</u> raíz de la varianza

$$\sigma = \sqrt{rac{1}{N}} \sum_{i}^{N} \left(x_i - ar{x}
ight)^2$$

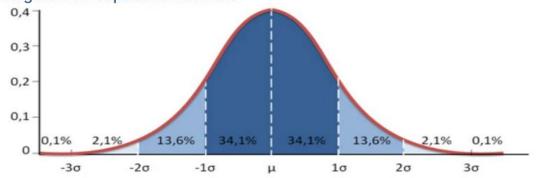
Si en lugar de calcular la varianza o el desvío de una muestra calculamos el de una población dividimos por N en lugar de N-1

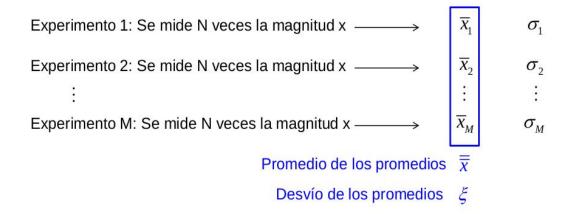

Bonus track: Distribución normal (Gaussiana)

- Cuando se trata de errores casuales los histogramas pueden aproximarse por una función gaussiana:

 $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\overline{x})^2}{2\sigma^2}}$ - Simétrica - Depende de 2 parámetros: media y desvío estándar

- Cuanto mayor sea el número de mediciones mejor es la aproximación
- En teoría, si se midiera infinitas veces se obtendría una distribución gaussiana cuyo valor medio μ sería el "valor real" de la magnitud
- Probabilidad de que una medición se halle en el intervalo (x_1 ; x_2):

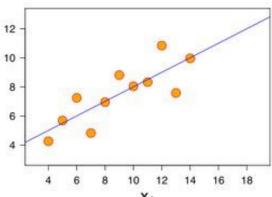

$$\int_{x_1}^{x_2} f(x) dx$$

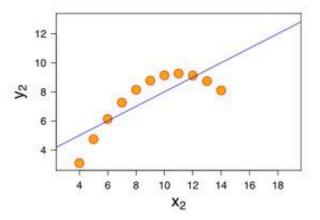

Bonus track: Distribución normal (Gaussiana)

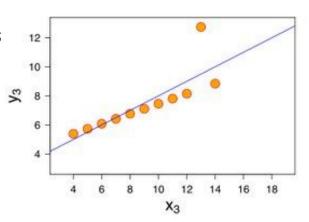
$$\int_{\overline{x}-\sigma}^{\overline{x}+\sigma} f(x) dx = 0,68$$
 El 68% de los datos caen en el intervalo $(\overline{x}-\sigma; \overline{x}+\sigma)$
$$\int_{\overline{x}-2\sigma}^{\overline{x}+2\sigma} f(x) dx = 0,95$$
 El 95% de los datos caen en el intervalo $(\overline{x}-2\sigma; \overline{x}+2\sigma)$
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
 El 100% de los datos caen en el intervalo $(-\infty; +\infty)$ Normalización

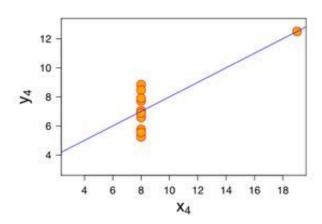
Los porcentajes representan la probabilidad de que una nueva medición caiga en el respectivo intervalo

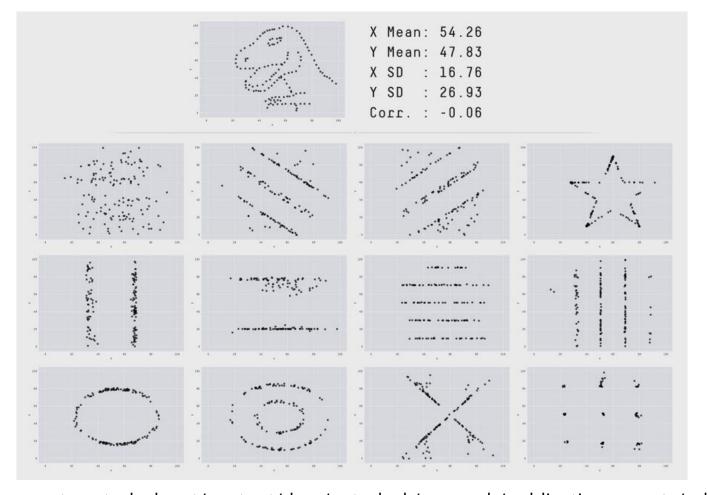
Bonus track: Distribución normal (Gaussiana)


- Al medir una vez, hay un 68% de probabilidad de que el resultado x caiga en $\overline{x} \pm \sigma$
- Al medir **N veces**, hay un 68% de probabilidad de que el **promedio** \overline{x} caiga en $\overline{x} \pm \xi$


Cuando se reporta un promedio
$$\overline{x}$$
 el error se asocia a $\xi = \frac{\sigma}{\sqrt{N}}$


Definición: Error estadístico =
$$\frac{\sigma}{\sqrt{N}}$$




Estos datos tiene: Mismo promedio, misma mediana y misma varianza, moraleja: ¡¡siempre mirar los datos!!

https://damassets.autodesk.net/content/dam/autodesk/research/publications-assets/pdf/same-stats-different-graphs.pdf

Análisis de datos

Soporte en la materia: Python

Vamos a usar Google Colaboratory

Todas las personas tienen que tener acceso al programa (cuenta de Google)

Importante: Recuerden todos los días llevarse sus datos, las computadoras son públicas y cualquiera puede borrar sus datos

<u>Intro a colab</u> DatosColab

Clase: obtención de datos

Realizar un conjunto de 100 mediciones de una variable continua aleatoria (guardar el orden en que se toman)

Algunos ejemplos:

- Tiempo de reacción
- Tamaños de hojas
- Intervalo entre la entrada de dos colectivos a CU

Discutir cómo realizar el proceso de medición (seriada, paralela, con que instrumento, persona única o dos diferentes, etc.). Anotar las conclusiones (ventajas, desventajas, limitaciones, etc.) en el cuaderno de laboratorio.

Clase: análisis de datos

Realizar tres histogramas, con los primeros 20 datos, 50 y finalmente 100 datos:

- Discutir tamaño del ancho de intervalo
- Discutir propiedades de la distribución
- Calcular propiedades estadísticas (Determinar la Moda, la Mediana y la Media con sus intervalos de confianza)

Clase: presentación de resultados

- 1. Encabezado
- 2. Desarrollo experimental
- 3. Resultados y discusión

Encabezado

- Título: define el tema del trabajo.
- Autores: debe referirse a las personas que trabajaron. Se deben agregar los mails y la filiación, es decir una referencia de pertenencia de los alumnos (turno, curso, carrera, año).

Completá de la siguiente manera: nombre con el que te identificás. Si querés, entre paréntesis colocá solo las iniciales del nombre que figura en tu DNI (no obligatorio en el laboratorio). **Ley** n° 26.743 Apellido. Ej: Alex (M.A.) Gutiérrez

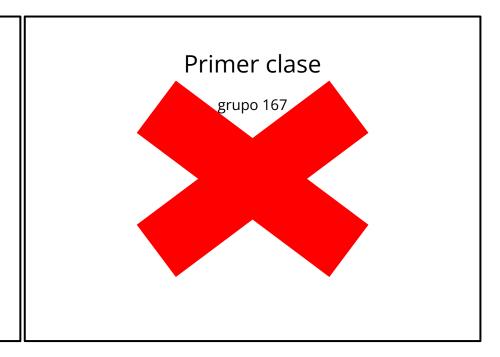
Encabezado

¿Cómo escribir un buen informe?*

R. Cherep Guber,** M. E. Heiberg Bose,*** y M. S. Sk lodowska Curie*****

Docentes de laboratorio de física 1 química, 2^{dor} cuatr 2023
* IMPORTANTE: El presente documento NO constituye un trabajo de investigación y sólo fue realizado a fines de presentar un formato de informe. Los autores indicados son de fantasía. ** cherep.guber@email.com *** heiberg.bose@email.com **** sklodowska.curie@email.com

Primer clase


grupo 167

Encabezado

¿Cómo escribir un buen informe?*

R. Cherep Guber,** M. E. Heiberg Bose,*** y M. S. Sk lodowska Curie*****

Docentes de laboratorio de física 1 química, 2^{dor} cuatr 2023
* IMPORTANTE: El presente documento NO constituye un trabajo de investigación y sólo fue realizado a fines de presentar un formato de informe. Los autores indicados son de fantasía. ** cherep.guber@email.com *** heiberg.bose@email.com sklodowska.curie@email.com

Desarrollo experimental

- Detalle de la **configuración experimental** utilizada, una descripción de los aspectos relevantes de los **dispositivos** y **equipos de medición**, especificando sus características.

Desarrollo experimental

- Detalle de la configuración experimental utilizada, una descripción de los aspectos relevantes de los dispositivos y equipos de medición, especificando sus características.
- Explicar el método de medición con el mayor detalle y claridad posible. Recomendación: presentar **esquemas** del dispositivo empleado.

Desarrollo experimental

- Detalle de la configuración experimental utilizada, una descripción de los aspectos relevantes de los dispositivos y equipos de medición, especificando sus características.
- Explicar el método de medición con el mayor detalle y claridad posible. Recomendación: presentar **esquemas** del dispositivo empleado.

El **objetivo** de esta sección es que un lector, con formación académica similar, pueda **replicar** la experiencia aunque nunca la haya hecho.

Resultados y discusión

- Contener los **tres histogramas**, indicando la cantidad de mediciones y expresar los valores de moda, media y mediana correctamente (ver apunte cifras significativas y unidades)
- Discusión de la validez, precisión, e interpretación de los resultados.

Ayuda memoria

- 1. Cuenten el experimento que hicieron y los cuidados que tuvieron.
- 2. Respondan las preguntas de la consigna.
- Tiene que poder leerse, es un texto formal, escrito, donde el lector no sabe qué experimento hicieron y ustedes le están contando.
- 4. Discutan y saquen conclusiones en base a evidencias (sus resultados).

Para escribir el reporte

- Utilizar la siguiente plantilla: <u>link</u>

Luego escribir el reporte

- Realizar el **chequeo** de secciones.
- ¿Es coherente? Utilizar el mismo tiempo verbal.
- Revisar esta presentación ante cualquier duda.