RESUMEN DE ECUACIONES

1^{er} Parcial Física 2

October 5, 2012

1 La Cuerda

1.1 Ecuación de ondas

No disperivo $\frac{\partial^2 \psi(x,t)}{\partial t^2} = c^2 \frac{\partial^2 \psi(x,t)}{\partial x^2} \qquad c^2 = \frac{T_o}{\rho}$ Dispersivo $\frac{\partial^2 \psi(x,t)}{\partial t^2} = c^2 \frac{\partial^2 \psi(x,t)}{\partial x^2} - \gamma \frac{\partial \psi(x,t)}{\partial t}$

1.2 Contornos

Extremo fijo	$\psi(x_o, t) = 0$
Extremo libre	$\left. \frac{\partial \psi}{\partial x} \right _{x_o} = 0$
Unión de dos cuerdas	$\psi_I(x_o, t) = \psi_{II}(x_o, t)$
	$\left \frac{\partial \psi_I(x,t)}{\partial x} \right _{x_o} = \left. \frac{\partial \psi_{II}(x,t)}{\partial x} \right _{x_o}$

2 Ondas de sonido en un tubo.

2.1 Ecuación de ondas

$$\frac{\partial^2 \psi(x,t)}{\partial t^2} = c^2 \frac{\partial^2 \psi(x,t)}{\partial x^2} \qquad c^2 = \frac{\gamma P_o}{\rho_o}$$

$$\frac{\partial^2 P_s(x,t)}{\partial t^2} = c^2 \frac{\partial^2 P_s(x,t)}{\partial x^2}$$

$$\frac{\partial^2 \rho_s(x,t)}{\partial t^2} = c^2 \frac{\partial^2 \rho_s(x,t)}{\partial x^2}$$

2.2Otras ecuaciones.

$$\rho_s = -\rho_o \frac{\partial \psi}{\partial x}$$

$$\rho_s = -\rho_o \frac{\partial \psi}{\partial x}$$

$$P_s = -\gamma P_o \frac{\partial \psi}{\partial x}$$

2.3Contornos

Extremo cerrado	$\psi(x_o, t) = 0$
	$\left. \frac{\partial P_s}{\partial x} \right _{x_o} = 0$
	$\frac{\partial \rho_s}{\partial x}\Big _{x_o} = 0$
Extremo abierto	$\frac{\partial \psi}{\partial x}\Big _{x_o}^{x_o} = 0$
	$P_s(x_o, t) = 0$
	$\rho_s(x_o, t) = 0$
Unión de dos medios ó	$\rho_s(x_o, t) = 0$ $P_{sI}(x_o, t) = P_{sII}(x_o, t)$
unión de secciones diferentes	
	$A_1 \frac{\partial \psi_I(x,t)}{\partial t} \Big _{x_o} = A_2 \left. \frac{\partial \psi_{II}(x,t)}{\partial t} \Big _{x_o} \right.$

En el caso de tubo abierto ó cerrado solo hay que aplicar una de las condiciones según corresponda, mientras que en el caso restante hay que aplicar ambas ecuaciones.

Cualquier error o sugerencia de ecuaciones para agregar se agradece su aviso.