FISICA 2 (F) - Verano 2019

---- SEMANA 1 ----

CLASE 1 (Lu 28 Ene)

Oscilador armónico libre y con disipación. Energía del oscilador libre y con disipación. Oscilador armónico forzado: planteo del problema. Oscilador armónico forzado. Regímenes transitorio y estacionario.

CLASE 2 (Mi 30 Ene)

Solución estacionaria en función de la frecuencia. Resonancia. Potencia instantánea y promedio. Resonancia. Potencia promedio. Factor de mérito. Sistemas con más de un grado de libertad: dos péndulos físicos acoplados. Coordenadas colectivas.

CLASE 3 (Vi 01 Feb)

Dos péndulos físicos acoplados: portadora y moduladora, batidos. Oscilador armónico con dos grados de libertad. Serie y transformada de Fourier.

---- **SEMANA 2** -----

CLASE 4 (Lu 04 Feb)

Ondas en una dimensión. La cuerda vibrante. Ondas estacionarias o modos normales. Condiciones de borde: bordes fijos. Notas musicales. Demostración con cuerdas de la guitarra.

CLASE 5 (Mi 06 Feb)

Solución general: superposición de modos normales. Condiciones iniciales. Condiciones de borde: extremos libres. Energía de la cuerda vibrante. Ondas longitudinales en un resorte: dinámica y consideraciones energéticas.

CLASE 6 (Vi 08 Feb)

Ondas de presión en un fluído, sonido. Ondas propagantes o viajeras. Ondas viajeras sinusoidales. Velocidad de fase. Superposición de dos ondas viajeras de igual amplitud.

---- **SEMANA 3** -----

CLASE 7 (Lu 11 Feb)

Potencia transportada por la onda viajera. Potencia media, intensidad, decibeles. Reflexión y transmisión de ondas: cuerda con densidad no uniforme. Reflexión y transmisión del sonido.

CLASE 8 (Mi 13 Feb)

Paquetes de ondas. Velocidad de grupo. Ecuación de Klein-Gordon. Ecuación de Schrödinger de partícula libre. Paquete con coeficientes iguales, caso, N=2. Introducción ondas en dos y tres dimensiones.

CLASE 9 (Vi 15 Feb)

Ondas en dos y tres dimensiones. Ondas planas propagantes. Planos de fase constante. Reflexión y refracción de ondas planas en superficie plana, ley de Snell. Reflexión interna total.

	1 /\ N	 /	

LUNES 18 Febrero, PRIMER PARCIAL

Segunda Parte: OPTICA

CLASE 10 (Mi 20 Feb)

Ondas esféricas y ondas cilíndricas. Principio de Huygens. Rayos. Longitud de camino óptico. Principio de Fermat. Definición de sistemas ópticos. El óvalo cartesiano; foco objeto y foco imagen. Dioptras esféricas. Fórmula exacta y aproximación paraxial. Distancias focales.

CLASE 11 (Vi 22 Feb)

Imagen y objeto reales y virtuales. Lentes simples. Fórmula del fabricante de lentes. Lente delgada. Formación de imágenes finitas, aumento lateral.

---- **SEMANA 5** -----

CLASE 12 (Lu 25 Feb)

Planos focales, poder dióptrico de una lente. Sistemas ópticos: el ojo. Algunos defectos del ojo.

CLASE 13 (Mi 27 Feb)

Polarización de la luz. Polarización lineal, circular, elíptica. Luz natural. Polarizadores, ley de Malus. Polarización por reflexión. Retardadores. Lámina de media onda y de cuarto de onda.

CLASE 14 (Vi 01 Mar)

Interferencia entre dos rayos con diferente longitud de camino óptico. Interferencia por división de frente de onda: Experimento de Young. Realización con rendijas y con espejos.

---- **SEMANA** 6 -----

Feriado Carnaval (Lu 04 Mar)

CLASE 15 (Mi 06 Mar)

Interferencia por división de amplitud: lámina de caras paralelas, franjas de Fizeau, anillos de Newton.

CLASE 16 (Vi 08 Mar)

Difracción de Fraunhofer en una rendija. Dos rendijas.

---- **SEMANA 7** -----

CLASE 17 (Lu 11 Mar)

N rendijas, redes de difracción, poder resolvente.

CLASE 18 (Mi 13 Mar)

Temas pendientes a determinar. Repaso.

VIERNES 15 Marzo: SEGUNDO PARCIAL