Guía 3: Modos Normales en Cuerdas y Gases en Tubos Unidimensionales

Modos normales de una cuerda

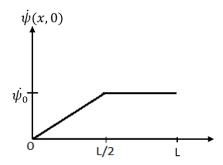
- 1. Se tiene una cuerda de longitud L y densidad lineal de masa μ sometida a una tensión T_0 . Proponga como solución de la ecuación de ondas para un modo normal a la expresión: $\Psi(x,t) = A \operatorname{sen}(kx + \varphi) \operatorname{cos}(\omega t + \theta)$. Tome el sistema de coordenadas con x = 0 en un extremo de la cuerda y x = L en el otro. Encuentre la forma particular que adopta la solución propuesta en los siguientes casos:
 - $\Psi(0,t) = \Psi(L,t) = 0$ (ambos extremos están fijos).
 - $\Psi(0,t) = 0$ y $\frac{\partial \Psi}{\partial x}(L,t) = 0$ (un extremo está fijo y el otro está libre). ¿Imponer que un extremo se encuentre "libre" es equivalente a no imponer condiciones de contorno sobre ese extremo? ¿Cómo lograría un extremo "libre" para la cuerda?
 - $\frac{\partial \Psi}{\partial x}(0,t) = \frac{\partial \Psi}{\partial x}(L,t) = 0$ (ambos extremos se encuentran libres). ¿A qué corresponde el modo de frecuencia mínima? ¿Cuánto vale la frecuencia de oscilación de ese modo?
 - Ahora tome un sistema de coordenadas con x=0 en el centro de la cuerda. Halle la forma que adopta la solución general propuesta si $\Psi(-L/2,t)=\Psi(L/2,t)=0$ (ambos extremos fijos).
- 2. Se tiene una cuerda de 20 cm de longitud y 5 g de masa, sometida a una tensión de 120 N. Calcule sus modos naturales de oscilación. ¿Son todos audibles para el oído humano?
- 3. Las cuatro cuerdas de un violín, considere que todas son de igual longitud, emiten en su modo fundamental las notas: sol₂ (f=198 Hz); re₃ (f=297 Hz); la₃ (f=440 Hz) y mi₄ (f=660 Hz)*. La primera cuerda es de aluminio (ρ = 2,6 g/cm³ y diámetro d_1 = 0,09 cm); las dos siguientes son de otro material (ρ = 1,2 g/cm³) y diámetros d_2 = 0,12 cm y d_3 = 0,1 cm, y la cuarta es de acero (ρ = 7,5 g/cm³) y diámetro d_4 = 0,1 cm. Calcular las tensiones a las que deben estar sometidas con respecto a la primera. *Recuerde que f= ω /2 π
- 4. Una cuerda de longitud L fija en sus extremos es lanzada a oscilar con igual amplitud en sus dos modos de menor frecuencia. Considere que parte del reposo.
 - a) Encuentre el apartamiento del equilibrio para cada punto de la cuerda en función del tiempo.
 - b) ¿Con qué período se repite el movimiento?
 - c) Grafíquelo para cuatro instantes equispaciados dentro de un período.
- 5. Considere una cuerda de longitud L, de densidad de masa uniforme μ_0 sujeta en ambos extremos y sometida a una tensión T_0 . A t=0 la cuerda se suelta de modo que su forma está dada por la siguiente función: $\Psi(x,0)=H(x)=\sin(\pi x/L)+(1/3)\sin(3\pi x/L)+(1/5)\sin(5\pi x/L)$, si se toma un sistema de coordenadas que tiene x=0 en un extremo de la soga y x=L en el otro.
 - a) Halle $\Psi(x,t)$.
 - b) Grafique $\Psi(x,t)$ para $\omega_1 t = 0$, $\pi/5$, $\pi/3$ y $\pi/2$. ¿Qué clase de simetría tiene $\Psi(x,t)$ alrededor de $\omega_1 t = \pi/2$? ¿y alrededor de π ?. ¿Cómo espera que sea $\Psi(x,t)$ para $\omega_1 t = 2\pi$? (ω_1 es la frecuencia fundamental).
- 6. Se tiene una cuerda de longitud L y densidad lineal μ_0 , sometida a una tensión T_0 . La cuerda tiene ambos extremos fijos.
 - a) Escriba la expresión más general posible para un modo normal en dicha cuerda y diga cuál es la velocidad de propagación de las ondas en ella.
 - b) Determine cuáles son las condiciones de contorno que deben satisfacerse y halle la forma general de los números de onda k_p y las correspondientes frecuencias y fases. Con esto, escriba la expresión general para una perturbación arbitraria $\Psi(x,t)$ en la cuerda.

c) Sabiendo que la deformación inicial $\Psi(x,0)$ está dada por

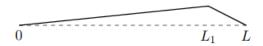
$$\Psi(x,0) = sen\left(\frac{3\pi x}{2L}\right) cos\left(\frac{\pi x}{2L}\right)$$

y considerando que inicialmente la cuerda se encuentra en reposo, calcule $\Psi(x,t)$.

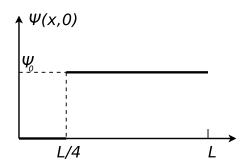
- 7. Se tiene una cuerda de longitud L y densidad de masa μ_0 sometida a una tensión T_0 . El extremo izquierdo de la cuerda está fijo y el derecho está libre.
 - a) Escriba la expresión más general para un modo normal en la cuerda, $\psi_n(x,t)$, imponiendo las condiciones de contorno. Hallar los números de onda permitidos.
 - b) Con lo obtenido en el inciso anterior, halle la expresión más general para una perturbación arbitraria $\Psi(x,t)$.



- 8. Sea una cuerda de largo L, fija en sus extremos. A la cuerda se le impone la forma dada por la figura.
 - ¿Para qué valor de L₁ se maximiza la excitación el primer modo? Primero utilice criterios de simetría para definir cuáles serían esas posiciones y luego piense qué estrategias analíticas/numéricas o gráficas le permitirán obtener el/los valores buscados. Implemente la que le resulte más conveniente.
 - Repita su procedimiento y averigue las posiciones de L_1 para el maximizar el segundo modo. ¿cuántas soluciones posibles hay?
 - *¿Qué cambia musicalmente al cambiar L_1 ?



9. Considere una cuerda de longitud L, de densidad de masa uniforme μ_0 sometida a una tensión T_0 , con un extremo fijo y el otro libre. Se le da a la cuerda la forma mostrada en la figura, y a t=0 se la suelta.



- a) Usando el sistema de coordenadas indicado en la figura, halle $\Psi(x,t)$.
- b) Graficar $\Psi(x,t)$ para $\omega_1 t = 0$, π y 2π .
- c) Si tomara un sistema de coordenadas con el origen en el extremo libre de la cuerda, diga qué es lo que cambiaría. ¿Es conveniente ese sistema?

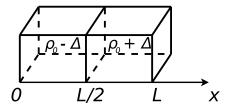
Oscilaciones longitudinales en gases en tubos unidimensionales

- 10. Se tiene un tubo de longitud L. Considere las siguientes posibilidades:
 - Está cerrado en ambos extremos, lleno de aire en su interior.
 - Tiene un extremo cerrado y el otro abierto.
 - Ambos extremos están abiertos.

Datos: velocidad de propagación de las ondas v_s , L, P_0 (presión atmosférica), $\rho_0 = \gamma P_0/v_s^2$.

Hallar, para cada una de dichas situaciones:

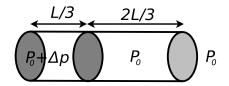
- a) Las posibles longitudes de onda con las que puede vibrar el aire en el tubo, y sus correspondientes frecuencias.
- b) Elija un sistema de referencia conveniente, y escriba la expresión más general para el desplazamiento de las partículas $\Psi(x,t)$. En dicha expresión, ¿qué parámetros conoce? ¿De qué dependen los parámetros que no conoce?
- c) A partir de la expresión hallada en (b), hallar $\delta p(x,t)$ (presión en cada punto, tomando como referencia la atmosférica). ¿Cuál es la diferencia de fase entre ellas? ¿Cuánto vale la amplitud de presión?
- d) Hallar $\rho(x,t)$ (densidad). ¿Cuánto vale su amplitud?
- 11. a) ¿Qué longitud debe tener un tubo de órgano abierto en ambos extremos para que produzca en el aire un sonido de 440 Hz?
 - b) ¿Qué longitud deberá tener un tubo de órgano cerrado en uno de sus extremos para que produzca el mismo tono en su primer armónico?
- 12. Se tiene un tubo cerrado en uno de sus extremos; su longitud es menor a 1m. Se acerca al extremo abierto un diapasón que está vibrando con $\nu = 440\,\mathrm{Hz}$. Considere $v_s = 330\,\mathrm{m/s}$.
 - a) Hallar las posibles longitudes del tubo para que haya resonancia. Para cada una de ellas, ¿en qué modo está vibrando el aire contenido en el tubo?
 - b) Repetir (a) si el tubo está abierto en ambos extremos.
- 13. Se tiene un tubo de longitud L cerrado en ambos extremos como se indica en la figura. El tubo presenta un tabique ubicado en la mitad del mismo. De un lado del tabique hay un gas de densidad $\rho_0 \Delta$ y del otro lado hay un gas de densidad $\rho_0 + \Delta$ (considere $\Delta \ll \rho_0$). Todo el gas se encuentra en reposo. A t = 0 se quita el tabique y se deja evolucionar al sistema.



- a) Escriba la expresión para un modo normal $\Psi_n(x,t)$ en el tubo, imponiendo las condiciones de contorno. ¿Cuáles son las longitudes de onda permitidas? (Ψ es el desplazamiento de los elementos del gas).
- b) Escriba la expresión de $\rho(x,0)$ y de $\Psi(x,0)$; grafíquelas. Sugerencia: hallar $\Psi(x,0)$ a partir de $\rho(x,0)$ usando las condiciones de contorno.
- c) Usando las condiciones iniciales, halle $\Psi(x,t)$. Calcule $\rho(x,t)$.

Datos: ρ_0 , Δ , L, velocidad del sonido en el gas v_s .

14. Se tiene un tubo dividido en dos regiones separadas por un tabique. En una de ellas se tiene una presión $P = P_0 + \Delta p$ (constante). La otra región está abierta a la atmósfera, teniendo presión P_0 . A t = 0 se remueve el tabique. Hallar $\delta p(x,t)$, $\Psi(x,t)$ y $\delta \rho(x,t)$.



Datos: P_0 , $\Delta p \ll P_0$, L, γ y la velocidad del sonido en el gas v_s .

Pág. 4/4