FÍSICA 2 (FÍSICA) - CÁTEDRA DIEGO ARBÓ

Primer Cuatrimestre de 2024

Guía 4: Ondas Viajeras

Parámetros de ondas viajeras

- 1. Verifique si las siguientes expresiones matemáticas cumplen la ecuación de ondas clásica unidimensional con velocidad de propagación v, y bajo qué condiciones. Grafique las funciones dadas.
 - a) $\psi(x,t) = Ae^{-\lambda(x-vt)^2}$
 - b) $\psi(x,t) = \beta(x+vt)$
 - c) $\psi(x,t) = A\sin[k(x-vt)]$
 - $d) \psi(x,t) = B\sin^2(kx \omega t)$
 - e) $\psi(x,t) = C\cos(kx)\sin(\omega t)$
 - $f) \ \psi(x,t) = De^{i(kx-\omega t)}$
 - $q) \ \psi(x,t) = x^2 v^2 t^2$
- 2. Una onda se propaga en una cuerda produciendo una oscilación transversal dada por:

$$\psi(x,t) = 0.1 \,\mathrm{m} \,\mathrm{sen} \left(\pi \,\mathrm{m}^{-1} x - 4 \pi \,\mathrm{s}^{-1} t \right)$$

Determine:

- a) la amplitud de la onda;
- b) su frecuencia de oscilación;
- c) su velocidad de propagación;
- d) el desplazamiento, velocidad y aceleración del segmento de cuerda ubicado en x=2 m en el tiempo t=1s.
- 3. Considere una onda tranversal que se propaga a lo largo de la dirección x, con frecuencia angular $\omega = 10\,\mathrm{s}^{-1}$ y número de onda $k = 100\,\mathrm{m}^{-1}$:

$$\psi(x,t) = A \operatorname{sen}(\phi(x,t)).$$

En $x_1 = 1 \,\mathrm{km}$ y $t_1 = 1 \,\mathrm{s}$ la fase de la onda es $\phi = \frac{3\pi}{2}$.

- a) ¿Cuál es la fase $\phi(x,t)$ en la posición x_1 para tiempo t=0?
- b) Considerando que $\phi(x,t) = kx \omega t + \phi_0$, ¿cuánto vale ϕ_0 ?
- c) ¿A qué velocidad se propaga la onda?
- d) ¿Cuánto tiempo tarda un frente de onda para viajar desde x_1 hacia $x_2 = 2x_1$?
- 4. Una cuerda de densidad lineal $\mu=0.005\,\frac{\mathrm{kg}}{\mathrm{m}}$ se tensa con una fuerza de 0.25 N. Un extremo de la cuerda se desplaza transversalmente (mediante la aplicación de una fuerza externa), siendo la distancia entre los desplazamientos extremos igual a 0.4 m, y el tiempo que tarda en recorrer dicha distancia igual a 0.25 s. Encontrar:
 - a) La velocidad de la onda generada en la cuerda, su frecuencia y su longitud de onda.

b) La expresión matemática para el desplazamiento $\psi(x,t)$.

En su movimiento, la cuerda tiene energía cinética y potencial por unidad de longitud, dadas por

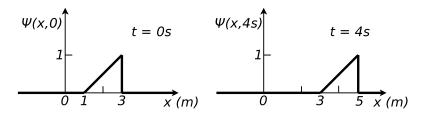
$$T(x,t) = \frac{1}{2}\mu \left(\frac{\partial \psi}{\partial t}\right)^2, \quad V(x,t) = \frac{1}{2}T_0 \left(\frac{\partial \psi}{\partial x}\right)^2.$$

Encontrar:

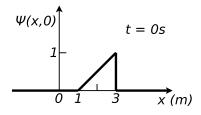
- c) La energía cinética por unidad de longitud promediada en el tiempo, para una partícula del medio.
- d) La energía potencial media por unidad de longitud, para la misma partícula.

Condiciones iniciales

5. Se tiene una perturbación que se propaga en una cuerda infinita con velocidad v. Se toman dos "fotografías" de la perturbación, a t=0 s y t=4 s:



- a) ¿Cuánto vale la velocidad de propagación de la perturbación v?.
- b) Halle $\psi(x,t)$.
- c) Calcule la velocidad transversal.
- 6. Se tiene una cuerda infinita. Se sabe que la velocidad de propagación de las ondas en ella es $v=100~\mathrm{m/s}$ (consideramos que dicha cuerda es un medio no dispersivo). A t=0 se la deforma de la manera que se indica en la figura, y se la suelta desde el reposo.



- a) Hallar $\psi(x,t) = \psi_1(x-vt) + \psi_2(x+vt)$. Dar explícitamente (en cada intervalo de interés) la expresión de $\psi(x,t)$.
- b) Comparar esta situación con la del problema anterior.
- 7. Se tiene una cuerda homogénea de longitud L y densidad μ , a una tensión T, con sus dos extremos fijos (x=0 y x=L). A t=0 se la perturba de forma tal que:

$$\psi(x,0) = \begin{cases} 0 & \text{si } 0 < x < a \\ h \frac{x-a}{L/2-a} & \text{si } a < x < L/2 \\ h \frac{L-a-x}{L/2-a} & \text{si } L/2 < x < L-a \\ 0 & \text{si } L-a < x < L. \end{cases}$$

Se suelta la cuerda desde el reposo; considerar $h \ll L$.

- a) Hallar $\psi(x,t)$ y demostrar que siempre es posible escribir esta solución como una superposición de una onda que se propaga hacia la derecha y una que se propaga hacia la izquierda.
- b) Hacer un esquema cualitativo del movimiento de la cuerda para los instantes $t_n = n \frac{L}{8v}$, donde v es la velocidad de propagación de las ondas en la cuerda y n es un número natural.

DF, FCEyN, UBA 3 Pág. 3 de 3