Problema 3

Una onda plana de la forma $A_i e^{i (\omega t - kx)}$ que se propaga en un gas de densidad en equilibrio ρ_{01} y constante γ_{01} incide sobre una capa de espesor L de otro gas cuya densidad de equilibro ρ_{02} y constante γ_{02} (tal que $\rho_{02} \gg \rho_{01}$). El tubo es semiinfinito, de sección constante A y se halla cerrado en su extremo inferior. La presión externa es ρ_0 .

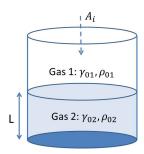


Figura 1: Esquema del sistema. Nota de color: Nitrógeno y Hexafloruro de azufre cumplen las relaciones de densidad para lograr este sistema

- a) Escriba claramente la expresión de desplazamiento en cada medio especificando la velocidad de propagación, v_1 y v_2 , y el número de onda, k_1 y k_2 , en cada medio.
- b) ¿Qué condiciones de contorno deben verificarse en cada interfase? Obtenga el sistema de ecuaciones necesario para encontrar R (Coeficiente de reflexión en el gas 1).
- c) Calcule R en función de los datos del problem. Estudie y justifique los siguientes casos límites
 - I) $L \to 0$
 - II) $\rho_{02} \to \rho_{01}, \, \gamma_{02} \to \gamma_{01}$