Guia 3, Problema 4:

Se suelta una cuerda fija en sus extremos desde el estado inicial en reposo indicado en la figura.

- a) Calcule la evolución en el tiempo.
- b) ¿Cuál es el modo excitado de mayor amplitud?c) ¿Qué modos no son excitados?

image

La solución de la ecuación de onda para una cuerda con extremos fijos partiendo del reposo es $\psi(x,t) = \sum_{}^{} B_m \sin(\pi \frac{m}{L} x) \cos(\omega_m t + \phi_m)$

Para obtener los B_m debemos "proyectar" el estado inicial f(x) en la corresponiente base de Fourier $\sin{(m\frac{\pi}{L}x)} \forall m$

$$B_m = \frac{2}{\lambda_1} \int_{-\frac{\lambda_1}{2}}^{\frac{\lambda_1}{2}} f(x) \sin(m \frac{\pi}{L} x), dx = \frac{1}{L} \int_{-L}^{L} f(x) \sin(m \frac{\pi}{L} x), dx$$

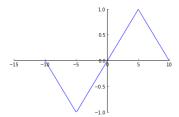
Populating the interactive namespace from numpy and matplotlib

```
In [2]: # declara simbolos a usar como tales
x, m, L, a, H= symbols('x m L a H')
# x va de 0 a L
# m es un número natural
# H es la máxima amplitud del estado inicial
a= H/(L/2)
```

A lo largo de toda la longitud de onda del modo fundamental $\lambda_1=2L$ ($k_1=\frac{\pi}{L}=\frac{2\pi}{\lambda_1}$) debe desarrolarse una descripción períodica de del estado inicial f(x). Una elección posible es extenderla entre (-L,L) como una función partida en tres partes.

$$\begin{split} f_1 &= -a(x+L) & (-L < x < -\frac{L}{2}) \\ f_2 &= ax & (-\frac{L}{2} < x < \frac{L}{2}) \\ f_3 &= -a(x-L) & (\frac{L}{2} < x < L) \end{split}$$

```
In [4]: # La versión períodica de la condición puede graficarse eligiendo valores arbitrarios para H y L (H=5, L=10).
f1s= f1.subs([(H, 1), (L, 10)] ), (x, -10, -5)
f2s= f2.subs([(H, 1), (L, 10)] ), (x, -5, 5)
f3s= f3.subs([(H, 1), (L, 10)] ), (x, 5, 10)
plot(f1s, f2s, f3s)
```



Out[4]: <sympy.plotting.plot.Plot at 0x3433510>

Queda entonces para obtener \boldsymbol{B}_{m} resolver tres integrales.

$$B_m = \frac{1}{L} \int_{-L}^{-\frac{L}{2}} f_1(x) \sin{(m\frac{\pi}{L}x)}, dx + \frac{1}{L} \int_{-\frac{L}{2}}^{-\frac{L}{2}} f_2(x) \sin{(m\frac{\pi}{L}x)}, dx + \frac{1}{L} \int_{\frac{L}{2}}^{L} f_3(x) \sin{(m\frac{\pi}{L}x)}, dx$$

Out[5]:
$$\begin{cases} 0 & \text{for } m = 0 \\ \frac{HL}{\pi m} \left(\cos \left(\frac{\pi m}{2} \right) + \frac{2}{\pi m} \sin \left(\frac{\pi m}{2} \right) - \frac{2}{\pi m} \sin (\pi m) \right) & \text{otherwise} \end{cases}$$

Out[6]:
$$\begin{cases} 0 & \text{for } m=0 \\ \frac{2HL}{\pi m} \left(-\cos\left(\frac{\pi m}{2}\right) + \frac{2}{\pi m}\sin\left(\frac{\pi m}{2}\right)\right) & \text{otherwise} \end{cases}$$

1 de 2

```
In [7]: #El tercero
e3= integrate(f3* aux,(x, L/2, L))
simplify(e3)
```

Out[7]:
$$\begin{cases} 0 & \text{for } m = 0 \\ \frac{HL}{\pi m} \left(\cos \left(\frac{\pi m}{2} \right) + \frac{2}{\pi m} \sin \left(\frac{\pi m}{2} \right) - \frac{2}{\pi m} \sin \left(\pi m \right) \right) & \text{otherwise} \end{cases}$$

Out[8]:
$$\begin{cases} 0 & \text{for } m=0 \\ \frac{4H}{\pi^2 m^2} \left(2 \sin \left(\frac{\pi m}{2}\right) - \sin \left(\pi m\right)\right) & \text{otherwise} \end{cases}$$

Esto equivale a $\frac{8H}{z^2m^2}$ para los m impares, siendo 0 para pares. Queda así respondido el punto c) del problema: Con la condición inicial dada no se exitan los modos pares

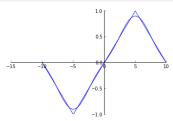
La evolución temporal (punto a) del problema), si parte del reposo, es $\psi(x,t) = \sum_m \frac{8H}{\pi^2 m^2} \sin(\pi \, \frac{m}{L} \, x) \cos(\omega_m t)$

$$\psi(x,t) = \sum_{m} \frac{8H}{\pi^2 m^2} \sin(\pi \frac{m}{L} x) \cos(\omega_m t)$$

Respecto al punto b) del problema, es evidente de la expresión para B $_{\rm m}$ ver que el modo de mayor amplitud es el de m=1

Out[10]:
$$-\frac{8H}{9\pi^2}$$

Out[11]:
$$\frac{8}{\pi^2} \sin\left(\frac{\pi x}{10}\right) - \frac{8}{9\pi^2} \sin\left(\frac{3\pi}{10}x\right)$$



Out[12]: <sympy.plotting.plot.Plot at 0x3bc4a10>

In []:

2 de 2 06/04/14 16:09