Cómo pasar de ESTO:

a **ESTO!!!!!!!**

Procesamiento de imágenes usando FIJI.

Por Lorena Sigaut lorena@df.uba.ar Se emplea el programa FIJI (que es una versión de ImageJ: Fiji Is Just ImageJ)

1) Abrir imagen formato tiff

Se puede arrastrar directamente el archivo tiff a la ventana del FIJI

O Abrir con el menú: : File – Open image

2) Ajustar parámetros de la imagen

Cambiar escala de colores: **Image – LookingTable—Red o HiLo o green** (por ej. Red pone escala de rojos)

Una escala **MUY** recomendable para usar es la: **HiLo** porque indica en azul los píxeles de la imagen que no tienen señal (es decir: nivel 0) y en rojo los píxeles que saturan (que tienen el nivel máximo de cada escala, si es de 8bit satura con nivel 255)

Cambiar rango de escala: Image – Ajust – Brightness/Contrast

Cambiar los valores mínimos y máximos. PARA DISCUTIR:

¿con qué criterios se eligen los valores máximo y mínimo?

3) Restar la imagen de ruido de la cámara a la imagen obtenida con cada cubo

Para este paso tienen abrir dos imágenes: la imagen obtenida con un cubo y la imagen de ruido de la cámara CCD. Por ejemplo, tienen las imágenes:

Imagen cubo excitación en azul

imagen ruido de la cámara CCD

Una vez abiertas ambas imágenes: PASAR IMÁGENES A 32bit - IMPORTANTE!!!

Convertir las imágenes a 32bit: Image – Type –32bit

La escala **32bit o double** posibilita trabajar con números decimales y negativos (números reales). **8bit** tiene una escala de grises de 256 niveles, todos enteros entre (0-255) **12bit** tiene una escala de grises de 4096 niveles, todos enteros entre (0-4095) **16bit** tiene una escala de grises de 65536 niveles, todos enteros entre (0-65535)

Brillo y contraste

Laboratorio de Física II (Biólogos y Geólogos) Procesamiento de imágenes Lorena Sigaut

entonces calculo A-B

Process – ImageExpressionParser abre ventana en donde debo cargar las imágenes con las cuales quiero operar. Se nombran con letras: A, B etc. Esta ventana permite realizar muchas operaciones con múltiples imágenes al mismo tiempo. Muy útil!!

B= imagen ruido cámara

Esta función genera una nueva ventana con la imagen de A-B que se puede guardar como un tiff

DESPUES DE REALIZAR ESTA OPERACIÓN HAY QUE VOLVER A AJUSTAR LOS **NIVELES DE BRILLO Y CONTRASTE!!!** Image – Ajust – Brightness/Contrast

4) Grabar la imagen obtenida en el paso anterior. File-Save as - tiff

Pasan a obtener una imagen:

Si A = imagen cubo y

ANTES de restarle la imagen de ruido LUEGO de restarle la imagen ruido!!

5) Calcular la señal de fondo de cada una de las imágenes

Elegir una región del fondo de la imagen obtenida usando un cubo y dibujar un rectángulo (u otra figura) en una región en donde **NO** haya célula. Con **M (apretar la M del teclado)** aparece la información de la región, como por ej. el área, el promedio de la intensidad, la std, el max y el min. Si se quieren agregar más parámetros ir en la misma ventana a **Resultados** y clickear los resultados que se quieren mostrar.

Elijo región donde NO hay célula y calculo el valor medio de la intensidad en esa región

Anotar **el valor de la intensidad media** (ese es el nivel de intensidad de fondo que tiene esa imagen).

6) Restar el fondo a cada imagen

Para restar el valor de fondo de la imagen, clickear la imagen a la cual se le quiere sustraer el fondo. Luego ir a **Process – Math – Substract** y escribir el valor de la intensidad promedio hallado en el paso 5.

DESPUES DE REALIZAR ESTA OPERACIÓN HAY QUE VOLVER A AJUSTAR LOS NIVELES DE BRILLO Y CONTRASTE!!! Image – Ajust – Brightness/Contrast

IMPORTANTE- PARA DISCUTIR: ¿con qué criterios se eligen los valores máximo y mínimo de la escala de colores?

ANTES de restar el fondo

DESPUES de restar el fondo

Queda azul el fondo de la imagen de la derecha porque es prácticamente 0

Si paso a escala de verdes en lugar de HiLo Image – LookingTable—Red o HiLo o green

7) Grabar la imagen obtenida en el paso anterior. File- Save as - tiff

8) Repetir los pasos 1 a 7 para las imágenes obtenidas con cada cubo.

COMBINAR LAS IMÁGENES OBTINIDAS CON CADA CUBO DE FLUORESCENCIA

1) Abrir las 3 imágenes correspondientes a cada uno de los cubos usados

2) A cada imagen ajustar el brillo

File – Open image – Ajust – Brightness/Contrast 3) A cada imagen asignarle el color correspondiente (rojo , verde o azul)

Image - LookingTable—Red (por ej.)

Van a tener 3 imágenes abiertas:

Laboratorio de Física II (Biólogos y Geólogos) Procesamiento de imágenes Lorena Sigaut

4) Combinar imágenes

Image – Color – Merge channels

Abre una ventana como la que está a la derecha. Indicar las imágenes que van en rojo – verde - azul

IMAGEN FINAL!!

Algunas funciones del FIJI que podrían ser útiles

1) Elegir la misma región en varias imágenes

Elegir una región del background en una de las imágenes y dibujar un rectángulo (u otra figura). Con M aparece la información de la región, como por ej. el área, el promedio de la intensidad, la std, el max y el min. Si se quieren agregar más parámetros ir en la misma ventana a **Resultados** y clickear los resultados que se quieren mostrar.

Para colocar la misma región en otra imagen hay que copiar la región:

Análisis – Tools – RoiManager y se abre una ventana clickear **Add** esto hace que se copie la región y queda con un código numérico. Clickear en la imagen y hacer doble clic sobre el código numérico (entonces aparece la misma región en la imagen post) apretar **M** y fijarse en el promedio.

2) Recortar una imágen

Si queremos **recortar** una parte de la imagen, seleccionar alguna forma (rectángulo, círculo etc.) y ubicarla dentro de la imagen. **Image - Crop**.

3) Definir la escala

Se necesita saber el tamaño del píxel! (o alguna otra referencia)

Ir a Analyze - Set scale, y poner

Distance in pixels: 1 Known distance: el tamaño del pixel Pixel aspecto ratio: 1 Unit of length: nm (o la unidad en que tienen el tamaño del pixel)

4) Poner barra de escala - IMPORTANTE!!!!

Definir la escala antes de poner la barra de escala!

Analyze – Tools – Scale Bar

5) Poner el código de la escala de colores empleada

Si se desea se puede colocar el código de colores empleado: Analyze – Tools – Calibration Bar

6) Realizar un perfil de intensidades

Trazar una recta (seleccionamos la ROI para rectas). Vamos a Analyze - Plot profile.

7) Imagen para procesador de texto o presentación

IMPORTANTE!!!!

Si se quiere incorporar una imagen en un texto o presentación (por ej. en un archivo Word o powerpoint) conviene convertirla a RGB.

Image – Type – RGB color