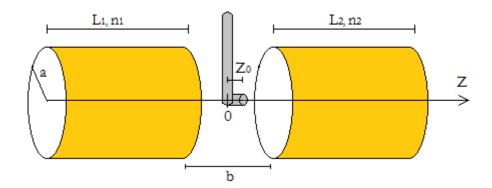

## Campo magnético sobre el eje de dos bobinas

Según "Foundations of Electromagnetic Theory, Reitz, Mildford (1960), pág.158, ec. (8-45)", el campo magnético de la bobina de la figura sobre el punto  $z_0$  de su eje es,



$$B_{z}(z_{0}) = I \frac{\mu_{0} n a^{2}}{2} \int_{0}^{L} \frac{dz}{\left[(z_{0} - z)^{2} + a^{2}\right]^{2}/3}$$
 (1)

en donde,


I, es la corriente que circula por el solenoide

*n*, es el número de espiras por unidad de longitud

a, es el radio de la bobina

L, es la longitud de la bobina.

En el laboratorio, trabajamos con dos bobinas y colocamos la sonda Hall entre ellas,



el campo sobre la sonda es la suma de los campos debidos a las bobinas,

$$B = B_1 + B_2$$

con,

$$B_1(z_0) = I \frac{\mu_0 n a^2}{2} \int_{-b/2-L_1}^{-b/2} \frac{dz}{\left[\left(z_0 - z - b/2 - L_1\right)^2 + a^2\right]^{2/3}}$$
(2)

$$B_{2}(z_{0}) = I \frac{\mu_{0} n a^{2}}{2} \int_{b/2}^{b/2+L_{2}} \frac{dz}{\left[\left(z_{0} - z + b/2\right)^{2} + a^{2}\right]^{2/3}}$$
(3)

obtenidos de trasladar la expresión (1). Aquí *b* corresponde a la separación entre las bobinas.

El programa escrito en Python, nombra de igual manera a todos los parámetros y calcula las integrales en (2) y (3) numéricamente mediante el comando *trap* z de numpy.