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Campo eléctrico de una distribución

• Vimos que para 𝑁 cargas puntuales en 
posiciones 𝑟,, el campo 𝐸 en el punto 𝑟.

𝐸 𝑟. =
1

4𝜋𝜖.
3
,45

6
𝑞,7𝑟.,
𝑟.,8

• Donde �̂�., es un vector unitario que apunta 
desde 𝑟, hasta 𝑟.. Equivalentemente:

𝐸 𝑟. =
1

4𝜋𝜖.
3
,45

6 𝑞, 𝑟. − 𝑟,

𝑟. − 𝑟,
;

q1

qj

qN

𝑟.

𝐸(𝑟.)

𝑟. − 𝑟,

𝑟,



Campo eléctrico de una distribución

• Equivalentemente, pensemos en un 

diferencial de carga 𝜌 𝑟A 𝑑𝑉′ en el punto 

𝑟′ como parte de una distribución 
volumétrica 𝜌.

• La contribución de 𝜌 𝑟A 𝑑𝑉′ al campo 
eléctrico 𝐸 en el punto 𝑟 es:

𝑑𝐸 𝑟 =
1

4𝜋𝜖.

𝜌 𝑟A 𝑑𝑉A (𝑟 − 𝑟A)

𝑟 − 𝑟A
;

𝑑𝐸

𝑟
𝑟′

𝑟 − 𝑟A 𝑑𝑉′ 𝜌



Campo eléctrico de una distribución
• El campo total 𝐸 en el punto 𝑟 se obtiene integrando sobre todo el volumen de la distribución de carga. 

𝐸 𝑟 =
1

4𝜋𝜖.
D

𝜌 𝑟A (𝑟 − 𝑟A)

𝑟 − 𝑟A
; 𝑑𝑉A

• En cartesianas 𝑟A = (𝑥′, 𝑦′, 𝑧′) y 𝑟 = (𝑥, 𝑦, 𝑧):

𝐸F 𝑥, 𝑦, 𝑧 =
1

4𝜋𝜖.
D

𝜌 𝑥A, 𝑦A, 𝑧A (𝑥 − 𝑥A)

(𝑥 − 𝑥A)8+(𝑦 − 𝑦′)8+(𝑧 − 𝑧A)8
; 𝑑𝑥

A𝑑𝑦A𝑑𝑧A

𝐸H 𝑥, 𝑦, 𝑧 =
1

4𝜋𝜖.
D

𝜌 𝑥A, 𝑦A, 𝑧A (𝑦 − 𝑦′)

(𝑥 − 𝑥A)8+(𝑦 − 𝑦′)8+(𝑧 − 𝑧A)8
; 𝑑𝑥

A𝑑𝑦A𝑑𝑧A

𝐸I 𝑥, 𝑦, 𝑧 =
1

4𝜋𝜖.
D

𝜌 𝑥A, 𝑦A, 𝑧A (𝑧 − 𝑧A)

(𝑥 − 𝑥A)8+(𝑦 − 𝑦′)8+(𝑧 − 𝑧A)8
; 𝑑𝑥

A𝑑𝑦A𝑑𝑧A



Distribución lineal uniforme infinita

• “Hilo infinito” de carga a lo largo de eje x

• Grosor despreciable (𝑦A = 𝑧A = 0)

• Distribución constante 𝜆 𝑥 = cte ( ⁄M N).

• Calculemos el campo 𝐸 en el punto 𝑃.

• Sumemos las contribuciones 𝑑𝐸 de los 
diferenciales de carga 𝑑𝑞 = 𝜆 𝑑𝑥

𝑥

𝑃



Distribución lineal uniforme infinita

• Simetría de traslación a lo largo del eje 𝑥.
• Pongo el origen en cualquier x. Por ejemplo, 

de manera que 𝑃F = 0.
• Simetría alrededor de 𝑥. 
• Da lo mismo cualquier ángulo entre 𝑃 y los 

ejes 7𝑦 y �̂�. Puedo hacer 𝑃I = 0 y 𝑃H = 𝑟

𝑥

𝑃

𝑧

𝑦
𝑟



Distribución lineal uniforme infinita

• Simetría de traslación a lo largo del eje 𝑥.
• Pongo el origen en cualquier x. Por ejemplo, 

de manera que 𝑃F = 0.
• Simetría alrededor de 𝑥. 
• Da lo mismo cualquier ángulo entre 𝑃 y los 

ejes 7𝑦 y �̂�. Puedo hacer 𝑃I = 0 y 𝑃H = 𝑟
• Entonces, el campo debe ser radial en 

cilíndricas y sólo depender de la distancia 
radial 𝑟: 

𝐸 = 𝐸P(𝑟)�̂�𝑥

𝑃

𝑧

𝑦
𝑟

𝐸



Distribución lineal uniforme infinita

• El diferencial de campo radial 𝑑𝐸P en 𝑃
generado por un diferencial 𝑑𝑞 = 𝜆 𝑑𝑥
viene dado por

𝑑𝐸P = 𝑑𝐸 cos 𝜃
Donde el ángulo entre el eje 𝑦 y la 
dirección al 𝑑𝑞.

• Como vimos, 𝑑𝐸 = UV
WXYZ[\

• Reemplazamos 𝑑𝐸

𝑑𝐸P =

RLRCTROSTATICS: CHARGRS AND FIRLDS 27 

ricuue 1 . ~ 1  
(a) The field al Pis the vector sum d contributions 
from each element 01 the line charge. (6) Deta~l of (a. 

point in they direction, so that Ex and E, are both zero. The conrri- 
bution of the charge dg to the y component of the electric field at P 
is 

A dx dE, = - cos B = - R~ R2 COS e 

where 8 is the angle the vector field of dq makes with they direction. 
The total y component is  then 

It is convenient to use B as the variable of integration. Since R = 
rlcos 8 and dx = R de/cos 8, the integral becomes 

*I2 h cos B dB A "I2 - - 2 A  
- r cos 8 dB = - (26) r 

We see that the field of an infinitely long, uniformly dense line charge 
is proportional to the reciprocal of the distance from the line. Its direc- 
tion is of course radially outward if the line carries a positive charge, 
inward if negative. 

Gauss' law leads directly to the same result. Surround a segment 

𝑑𝐸P



Distribución lineal uniforme infinita

• Integramos sobre todo el hilo

• 𝐸 𝑟 = ∫𝑑𝐸P =

• Como 𝑑𝑥 cos 𝜃 = 𝑅 𝑑𝜃 y 𝑅 cos 𝜃 = 𝑟 la 
integral en función de 𝜃 queda:

• 𝐸 𝑟 =

𝐸 𝑟 =
2𝜆

4𝜋𝜖.𝑟
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Ley de Gauss

Electrostática



Flujo de un campo a través de una superficie
El flujo es el producto de un campo por el área transversal que atraviesa 



Flujo de un campo a través de una superficie

Superficie plana de área A, 𝐸 uniforme

Φ = 𝐸 a 𝐴 = 𝐸𝐴 cos 𝜃

El flujo es el producto de un campo por el área transversal que atraviesa 



Flujo de campo eléctrico

• Superficie compuestas de facetas de área 𝐴c atravesadas 
por campos 𝐸c .

• Si las facetas son infinitesimalmente pequeñas:

Φ = 3
deUef gef c

𝐸c a 𝐴c = 3
deUef gef c

𝐸c𝐴c cos 𝜃c

Φ = h𝐸 a 𝑑𝑠 = h𝐸 a 𝑛 𝑑𝑠

S S
Campo en la faceta 
infinitesimal

Normal a la faceta 
infinitesimal

Diferencial de 
área

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera 
• En coordenadas esféricas, el 

campo generado a una 
distancia r es siempre radial 
y vale: 

𝐸(𝑟) =
1

4𝜋𝜖.
𝑄
𝑟8
�̂�

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera 
• El flujo del campo eléctrico a 

través de una esfera de radio 
r vale: Esfera de 

radio r

Φ = h𝐸 a 𝑑𝑠
Superficie de 
la esfera

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera 
• Sobre la esfera, 𝐸 apunta 

siempre radialmente y vale lo 
mismo Esfera de 

radio r

Φ = h
1

4𝜋𝜖.
𝑄
𝑟8
�̂� a 𝑑𝑠

Superficie de 
la esfera

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera 
• El diferencial de área en la 

esfera apunta radialmente y 
vale 𝑟8 sin 𝜃 𝑑𝜃 𝑑𝜑 Esfera de 

radio r

Φ = h
1

4𝜋𝜖.
𝑄
𝑟8
�̂� a 𝑟8 sin 𝜃 𝑑𝜃 𝑑𝜑 �̂�

Superficie de 
la esfera

𝐸



Flujo eléctrico de una carga Q a través de una 
esfera 
• Partiendo de: 

• Reorganizamos los factores y tachamos los 𝑟8

Φ = h
1

4𝜋𝜖.
𝑄
𝑟8 �̂� a 𝑟

8 sin 𝜃 𝑑𝜃 𝑑𝜑 �̂�

Superficie de 
la esfera

Φ = h
1

4𝜋𝜖.
𝑄
𝑟8 𝑟

8 sin 𝜃 𝑑𝜃 𝑑𝜑 �̂� a �̂�

Superficie de 
la esfera



Flujo eléctrico de una carga Q a través de una 
esfera 
• Luego, sabemos que por definición �̂� a �̂� = 1

• Ponemos ahora los límites de integración y Q sale afuera

Φ = h
1

4𝜋𝜖.
𝑄 sin 𝜃 𝑑𝜃 𝑑𝜑

Φ =
𝑄

4𝜋𝜖.
h
.

X
sin 𝜃 𝑑𝜃 h

.

8X
𝑑𝜑

Superficie de 
la esfera



Flujo eléctrico de una carga Q a través de una 
esfera 
• La primera integral da 2, mientras que la segunda vale 2𝜋, entonces

• Vemos que el resultado no depende del radio de la esfera, o sea 
que es el mismo para cualquier valor de r.

Φ =
1

4𝜋𝜖.
𝑄 4𝜋 =

𝑄
𝜖.



Ley de Gauss

Se verifica que en general, para toda superficie cerrada S 
que encierra un volumen V, El flujo del campo eléctrico 𝐸 a 
través de S es proporcional a la carga total encerrada

S V

Carl Friederich Gauss
(1777-1855)



Pregunta 

• ¿Qué dice el Teorema de Gauss?



Campo de una distribución esférica de carga

• Supongamos una distribución de 
carga 𝜌 como la de la figura.

ELECTROSTATICS: CHARGlS AND FlRLDS 25 

Looking back over our proof, we see that it hinged on the 
inverse-square nature of the interaction and of course on the additivity 
of interactions, or superposition. Thus the theorem is applicable to any 
inverse-square field in physics, for instance. to the gravitational field. 

It is easy to see that Gauss's law would nor hold if the law of 
force were. say. inverse-cube. For in that case the flux of electric field 
from a point charge q through a sphere of radius R centered on the 
charge would be 

By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
constant. 

This remarkable theorem enlarges our grasp in two ways. First. 
it reveals a connection between the field and its sources that is the 
converse of Coulomb's Iaw. Coulomb's law tells us how to derive the 
electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 

FIELD OF A SPHERICAL CHARGE DISTRIBUTION 
1.1 1 We can use Gauss's law to find the electric field of a spheri- 
cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 

FIGURE 1.18 
A charge distribution with spher~cd symmetry 

FIGURE 1mlO 
The electric Celd of a spheriml charge distribution 



Campo de una distribución esférica de carga

• Supongamos una distribución de 
carga 𝜌 como la de la figura.

• La carga varía solamente con 
distancia radial y termina en 𝑟 = 𝑟..
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electric field if the charges are given; with Gauss's law we can deter- 
mine how much charge is in any region if the field is known. Second. 
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Campo de una distribución esférica de carga

• Supongamos una distribución de 
carga 𝜌 como la de la figura.

• La carga varía solamente con 
distancia radial y termina en 𝑟 = 𝑟..

• Calculemos el campo en todo el 
espacio aprovechando la Ley de 
Gauss y la simetría del sistema.
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Campo de una distribución esférica de carga

• El sistema tiene simetría esférica (rotar 
la carga alrededor del origen no cambia 
nada).
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Campo de una distribución esférica de carga

• El sistema tiene simetría esférica (rotar 
la carga alrededor del origen no cambia 
nada).

• El campo debe ser radial y depender  
sólo de la distancia r.

ELECTROSTATICS: CHARGlS AND FlRLDS 25 
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• El sistema tiene simetría esférica (rotar 
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nada).

• El campo debe ser radial y depender  
sólo de la distancia r.
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the mathematical relation here demonstrated is a powerFul analytic 
tool; it can make complicated problems easy. as we shall see. 

FIELD OF A SPHERICAL CHARGE DISTRIBUTION 
1.1 1 We can use Gauss's law to find the electric field of a spheri- 
cally symmetrical distribution of charge, that is, a distribution in 
which the charge density p depends only on the radius from a central 
point. Figure 1.18 depicts a cross section through some such distri- 
bution. Here the charge density i s  high a t  the center, and is zero 
beyond ro. What is the electric field at some point such as PI outside 
the distribution, or P2 inside it (Fig. 1.19)? If we could proceed only 
from Coulomb's law, we should have to carry out an  integration which 
would sum the electric field vectors at PI arising from each elementary 
volume in the charge distributioa Let's try a different approach which 
exploits both the symmetry of the system and Gauss's law. 

Because of the spherical symmetry, the electric field at any p i n t  
must be radially directed-no other direction is unique. Likewise, the 
field magnitude E must be the same a t  all points on a spherical surface 
S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 

FIGURE 1.18 
A charge distribution with spher~cd symmetry 

FIGURE 1mlO 
The electric Celd of a spheriml charge distribution 



Campo de una distribución esférica de carga

• Sobre cualquier esfera centrada en el 
origen el módulo de 𝐸 vale siempre lo 
mismo.
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Campo de una distribución esférica de carga

• Sobre cualquier esfera centrada en el 
origen el módulo de 𝐸 vale siempre lo 
mismo.

• Si 𝐸5 es el módulo del campo sobre la 
esfera 𝑆5de radio 𝑟5 , el flujo será: 

Φ = ∫𝐸 a 𝑑𝑠 = 𝐸5 ∫ �̂� a �̂� 𝑑𝑠 = 4𝜋𝑟58𝐸5
𝑆5 𝑆5
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𝑐𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆5

𝜖.
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• Por la Ley de Gauss

• Por lo tanto

Φ = 4𝜋𝑟58𝐸5 =
𝑐𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆5
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4𝜋𝑟58𝜖.

Es como si toda la carga dentro de S1
estuviese concentrada en el origen

Sirve para 
todo 𝑟5 > 𝑟.
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By making the sphere large enough we could make the flux through 
it as small as we pleased, while the total charge inside remained 
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This remarkable theorem enlarges our grasp in two ways. First. 
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the mathematical relation here demonstrated is a powerFul analytic 
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must be radially directed-no other direction is unique. Likewise, the 
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• Análogamente, si 𝐸8 es el módulo del 
campo sobre la esfera 𝑆8 de radio 𝑟8

• Depende de cuánta carga encierre 𝑆8

𝐸8 =
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𝐶𝑎𝑟𝑔𝑎 𝑒𝑛𝑐𝑒𝑟𝑟𝑎𝑑𝑎 𝑝𝑜𝑟 𝑆8 = h𝜌 𝑑𝑉
Volumen 
encerrado
Por S2
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Looking back over our proof, we see that it hinged on the 
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S, of radius r,, for all such p in t s  are equivalent. Call this field mag- 
nitude El .  The flux through this surface SI is therefore simply 4?rdEI, 
and by Gauss's law this must be equal to h times the charge enclosed 
by the surface. That is, 4 ~ 4 ~ ~  = 47r (charge inside SI) or 

charge inside S, El = 4 (23) 

FIGURE 1.18 
A charge distribution with spher~cd symmetry 

FIGURE 1mlO 
The electric Celd of a spheriml charge distribution 
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Diferencia de potencial en carga puntual

• Supongamos que el campo viene 
de una carga puntual 𝑞.

𝐸(𝑟) =
1

4𝜋𝜖.
𝑞
𝑟8 �̂�

• Por el Camino A (camino radial 
desde r1 a r2 + un arco a r2) la 
integral entre P1 y P2 da:

• ∫{|
{\ 𝐸 a 𝑑𝑠 =

Camino A

THE ELECTRIC POTENTIAL 43 

FIGURE 2.2 
The electric field E is that of a positive point charge p. 
The line integral of E from PI to P, along path A has 
the value dl Ir, - Ilr2). It w~ll have exactly the same 
value if calculated for path 5, or for any other path 
from P, to 4. 

fields calculated separately. Or, stated more carefully, if E = El + 
E2 + - . . . then 

E -  ti^ = Ip:~l . d~ + Jp:4 -  ti^ + - - - (3) 

where the same path is used for all the integrations. Now any electre 
static field can be regarded as the sum of a number (possibly enor- 
mous) of pointaharge fields, as expressed in Eq. 1.14 or 1.15. There- 
fore if the line integral from PI to P2 is independent of path for each 
of the pointxharge fields El. E2, . . . . the total field E must have this 
property: 

The line integral E - ds for any electrostatic I," 
field E has the same value for all paths from P, to 
f'2 
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integral entre P1 y P2 da 𝑑𝑠 =
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• Mientras que el lazo blanco no 
contribuye.

Camino B
Tramo verde



Diferencia de potencial en carga puntual

• Como el camino B no tiene nada especial, la integral no depende 
del camino y para P1 y P2 fijos siempre vale:

h
{|

{\
𝐸 a 𝑑𝑠 =

𝑞
4𝜋𝜖.

1
𝑟5
−
1
𝑟8

• La diferencia de potencial entre P1 y P2 se define como:

𝜙85 = −∫{|
{\ 𝐸 a 𝑑𝑠

• En electrostática no depende del camino
• Solo depende del punto inicial y el final



Función potencial para una carga puntual

• La diferencia de potencial entre dos puntos es para este caso:

𝜙85 = −h
{|

{\
𝐸 a 𝑑𝑠 =

𝑞
4𝜋𝜖.

1
𝑟8
−
1
𝑟5

• Se puede definir una función potencial 𝜙(𝑟) si coloco un potencial de 
referencia común para todo el sistema. Podemos hacerlo en 𝑟5 = ∞
(muy lejos de la distribución) con lo cual:

𝜙 𝑟 = −h
�

P
𝐸 a 𝑑𝑠 =

𝑞
4𝜋𝜖.

1
𝑟

Función potencial de una carga puntual con potencial cero en el infinito



Pregunta

• Se llama equipotencial al conjunto de puntos del espacio que tienen 
el mismo valor de la función potencial. 

• ¿Qué forma tiene una equipotencial para el caso que acabamos de 
ver? 




