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Fenómenos periódicos

• Corazón
• Respirar
• Hamaca
• Bandera
• Movimiento de estrellas, planetas, lunas
• Nubes
• Sonido
• Luz



Ondas

• Ondas transversales: La perturbación es perpendicular al 
sentido de propagación de la onda (onda en una cuerda, ondas 
electromagnéticas, etc)
• Ondas longitudinales: La perturbación se da en la misma 

dirección que la propagación de la onda (ondas sonoras)

Una onda es una perturbación espacio temporal de una cantidad física con 
cierta periodicidad con la capacidad de transferir energía al propagarse.



Ondas mecánicas transversales: cuerda



Ondas en una cuerda

• Cuerda de densidad de masa 𝜇 por 
unidad de distancia.
• Sometida a una tensión 𝑇
• 𝑇 es tangente a la forma de la cuerda 
• Forma de la cuerda en un instante dado 

es 𝑦(𝑥)
• Inextensible (el módulo de la tensión 𝑇

es el mismo en toda la cuerda).
• Consideremos un tramo de la cuerda 

entre los puntos A y B (entre 𝑥 y 𝑥 +
∆𝑥).

𝑦

𝑥𝑥 𝑥 + ∆𝑥

𝑇

𝑇𝑇 sin(𝜃 + Δ𝜃)

𝑇 sin(𝜃)

𝑦(𝑥, 𝑡)



Ondas en una cuerda

• Consideremos ahora movimiento en la 
componente 𝑦.

𝐹1 = −𝑇 sin 𝜃 + 𝑇 sin(𝜃 + ∆𝜃)

• Si llamamos ∆𝐿 al largo del segmento, 
por segunda ley de Newton tenemos:

𝜇 ∆𝐿
𝜕6𝑦
𝜕𝑡6

= −𝑇 sin 𝜃 + 𝑇 sin(𝜃 + ∆𝜃)

𝑦

𝑥𝑥 𝑥 + ∆𝑥

𝑇

𝑇𝑇 sin(𝜃 + Δ𝜃)

𝑇 sin(𝜃)

𝑦(𝑥, 𝑡)



Ondas en una cuerda

• Para pequeños apartamientos (∆𝑦 y 𝜃
pequeños)

∆𝐿 ≅ ∆𝑥
sin 𝜃 ≅ tan 𝜃 ≅ 𝜃

• Entonces

𝜇 ∆𝑥
𝜕6𝑦
𝜕𝑡6

= −𝑇𝜃 + 𝑇 𝜃 + ∆𝜃 = 𝑇∆𝜃

• Hagamos ahora tender Δ𝑥 → 0

tan 𝜃 =
𝜕𝑦
𝜕𝑥

𝑦

𝑥𝑥 𝑥 + ∆𝑥

𝑇

𝑇𝑇 sin(𝜃 + Δ𝜃)

𝑇 sin(𝜃)

𝑦(𝑥, 𝑡)



Ondas en una cuerda

• Derivando respecto a 𝑥 tenemos

𝜕 tan 𝜃
𝜕𝑥 =

1
(cos 𝜃)6

𝜕𝜃
𝜕𝑥 =

𝜕6𝑦
𝜕𝑥6

Para 𝜃 ≅ 0, (cos 𝜃)6 ≅ 1

𝜕𝜃
𝜕𝑥 =

𝜕6𝑦
𝜕𝑥6

𝑦

𝑥𝑥 𝑥 + ∆𝑥

𝑇

𝑇𝑇 sin(𝜃 + Δ𝜃)

𝑇 sin(𝜃)

𝑦(𝑥, 𝑡)



Ondas en una cuerda

• Entonces, retomando, tenemos

𝜇 𝑑𝑥
𝜕6𝑦
𝜕𝑡6

= 𝑇𝑑𝜃
• Divido por 𝑑𝑥 (que no nos vea unx 

matemáticx) 

𝜇
𝜕6𝑦
𝜕𝑡6

= 𝑇
𝜕𝜃
𝜕𝑥

• y reemplazo @A
@B

:

𝜇
𝜕6𝑦
𝜕𝑡6

= 𝑇
𝜕6𝑦
𝜕𝑥6

𝑦

𝑥𝑥 𝑥 + ∆𝑥

𝑇

𝑇𝑇 sin(𝜃 + Δ𝜃)

𝑇 sin(𝜃)

𝑦(𝑥, 𝑡)



Ondas en una cuerda

• Tenemos la siguiente ecuación:

𝜇
𝑇
𝜕6𝑦
𝜕𝑡6 =

𝜕6𝑦
𝜕𝑥6

• C
D

tiene unidades de inversa de la 
velocidad, entonces, tomando una 
velocidad 𝑣 tal que 

𝑣 =
𝑇
𝜇

𝑦

𝑥𝑥 𝑥 + ∆𝑥

𝑇

𝑇𝑇 sin(𝜃 + Δ𝜃)

𝑇 sin(𝜃)

𝑦(𝑥, 𝑡)



Ondas en una cuerda

• Tenemos la ecuación de onda 
unidimensional

1
𝑣6
𝜕6𝑦
𝜕𝑡6 =

𝜕6𝑦
𝜕𝑥6

Ecuación fundamental, presente en 
muchas áreas de la física

𝑦

𝑥𝑥 𝑥 + ∆𝑥

𝑇

𝑇𝑇 sin(𝜃 + Δ𝜃)

𝑇 sin(𝜃)

𝑦(𝑥, 𝑡)

Electromagnetismo

Mecánica Cuántica
Mecánica de Fluidos



Ecuación de onda

• La ecuación de onda
1
𝑣6
𝜕6𝑦
𝜕𝑡6 =

𝜕6𝑦
𝜕𝑥6

• Tiene como solución cualquier función y = 𝑓(𝑥, 𝑡) del tipo

𝑦 𝑥, 𝑡 = 𝑓(𝑥, 𝑡) = 𝑓(𝑥 ± 𝑣𝑡)

• Como es lineal, una combinación lineal de soluciones también es una 
solución.



Velocidad de fase

• En la ecuación de onda, 𝑣 es la velocidad a la que cambia el argumento de 𝑓 (lo 
que está entre paréntesis) es decir, la fase de la oscilación.

• Se denomina velocidad de fase.

• Tanto +𝑣 como −𝑣 son válidas en la ecuación de onda

• En el caso de la cuerda, reemplazar 𝑓 𝑥 ± 𝑣𝑡 en la ecuación de onda nos da: 

𝑣 =
𝑇
𝜇



Signos de 𝑣 en un pulso 𝑓(𝑥 ± 𝑣𝑡)

Si 𝑣 > 0



Ejercicio

• Pensá y escribí una función solución de la ecuación de onda



Ondas viajeras sinusoidales

• Una de las soluciones de la ecuación de onda es 
la función:

𝑓 𝑥, 𝑡 = 𝐴 cos(𝑘𝑥 − 𝜔𝑡)

• Moviendo el extremo de la cuerda de arriba hacia 
abajo con una frecuencia angular 𝜔 la puedo 
generar (también le doy amplitud A)

• Viaja hacia la derecha con velocidad 

𝑣 =
𝑇
𝜇

𝑦

𝑥

𝐴



Ondas viajeras sinusoidales

• Si sacamos una foto de la cuerda a un 
instante dado 𝑡M, la forma de la onda es: 

𝑓 𝑥, 𝑡M = 𝐴 cos(𝑘𝑥 − 𝜔𝑡M)

• Es fácil ver que esta forma se repite cada 
distancia 𝜆 tal que

λ = 6P
Q

• A 𝜆 se la denomina longitud de onda y 𝑘
se denomina numero de onda

λ

𝑦

𝑥

𝐴



Ondas viajeras sinusoidales

• Si ahora nos paramos a una distancia 𝑥M

𝑓 𝑥M, 𝑡 = 𝐴 cos(𝑘𝑥M − 𝜔𝑡)

• Vemos el punto d ela cuerda subir y bajar 
con frecuencia 𝜔. La oscilación se vuelve a 
repetir al cabo de un período 𝜏 tal que

𝜏 = 6P
S

𝑦

𝑥
𝑥M

𝐴



Ondas viajeras sinusoidales

• Es facil ver reemplazando en la ecuación o sacando factor común 𝑘
que 

𝑣 =
𝑇
𝜇 =

𝜆
𝜏 =

𝜔
𝑘

• En este caso, 𝑣 no depende de 𝜔 ni de 𝑘 y estas se acomodan de 
manera de siempre cumplir con la ec. de dispersión. 
• En este caso la velocidad de fase es igual la velocidad con la que se 

propaga la energía (cinética) a lo largo de la cuerda. 

Ecuación de dispersión
de la onda



Reflexión, transmisión e 
impedancia



La velocidad de fase depende solo de la 
tensión y de la densidad de masa 



Cuerda inhomogénea: condición de contorno

• Dos cuerdas de distinta densidad 
de masa unidas en 𝑥 = 0
• De un lado y el otro

• Donde: 

Matthew Schwartz

Lecture 9:
Reflection, Transmission and Impedance

1 Boundary conditions at a junction

Suppose we take two taut strings, one thick and one thin and knot them together. What will
happen to a wave as it passes through the knot? Or, instead of changing the mass density at the
junction, we could change the tension (for example, by tying the string to a ring on a fixed rod
which can absorb the longitudinal force from the change in tension). What happens to a sound
wave when it passes from air to water? What happens to a light wave when it passes from air to
glass? In this lecture, we will answer these questions.

Let’s start with the string with varying tension. Say there is a knot at x= 0 and the tension
changes abruptly between x < 0 and x > 0. To be concrete, imagine we have a left-moving trav-
eling wave coming in at very early times, hitting the junction around t=0 (obviously all parts of
the wave can’t hit the junction at the same time). We would like to know what the wave looks
like at late times. Let us write the amplitude of the wave as ψL(x, t) to the left of the knot at
ψR(x, t) to the right of the knot.

ψ(x, t)=

{

ψL(x, t), x< 0
ψR(x, t), x! 0

(1)

To the left of the knot, the wave must satisfy one wave equation

[

∂2

∂t2
− v1

2 ∂
2

∂x2

]

ψL(x, t)= 0, v1=
T1

µ1

√

(2)

and to the right of the knot, another wave equation must be satisfied

[

∂2

∂t2
− v2

2 ∂
2

∂x2

]

ψR(x, t)= 0, v2=
T2

µ2

√

(3)

Recalling that the Heaviside step function (or theta-function) is defined by θ(x) = 0 if x < 0
and θ(x)= 1 for x! 0, we can also write Eq. (1) as

ψ(x, t)= ψL(x, t)θ(−x)+ ψR(x, t)θ(x) (4)

This way of writing ψ(x, y) makes it clear that it is just some function of position and time. We
need to determine what the boundary conditions are at the junction, and then find the full solu-
tion ψ(x, t) for all times.

Obviously ψ(x, t) should be continuous. So

ψL(0, t) = ψR(0, t) (5)

This is one boundary condition at the junction.

Recall from Lecture 6 that a point on the string of mass m gets a force from the parts of the
string to the left and to the right:

1
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𝜇T 𝜇6𝑇T 𝑇6

𝜓V(𝑥, 𝑡) 𝜓W(𝑥, 𝑡)



Cuerda inhomogénea: condición de contorno

• Necesitamos que haya 
continuidad en 𝑥 = 0, es decir 
que que para todo tiempo, la 
solución de la izquierda y la de 
la derecha deben coincidir en 
𝑥 = 0 𝜇T 𝜇6𝑇T 𝑇6
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Cuerda inhomogénea: condición de contorno

• Para la segunda condición de 
contorno pensemos en un pedacito 
de cuerda alrededor de 𝑥 = 0:

• La fuerza desde la izquierda vale

• Mientras que por la derecha:

The force from the part to the left is T
∆ψ

∆x
≈ T

∂ψ(x, t)

∂x
. This form makes sense, since if the string

has no slope, it is flat and there is no force. From the right, the force is −T
∂ψ(x, t)

∂x
. The sign has

to be opposite so that if there is no difference in slope there is no force (with equal tensions). So
if there are different tensions to the right and left, as at x=0, we have

m
∂2ψ(0, t)
∂t2

=T1
∂ψL(0, t)

∂x
−T2

∂ψR(0, t)
∂x

(6)

Now m is the mass of an infinitesimal point of string at x = 0. But T1 and T2 as well as the
slopes

∂ψL(0, t)

∂x
and

∂ψL(0, t)

∂x
are macroscopic quantities. Thus, if the right hand side doesn’t

vanish, we would find
∂2ψ(0, t)

∂t2
→ ∞ as m → 0. Equivalently, we can write m = µ∆x then this

becomes

µ∆x
∂ψ(0, t)
∂t2

=T1
∂ψL(0, t)

∂x
−T2

∂ψR(0, t)
∂x

(7)

Taking ∆x→ 0 we find

T1
∂ψL(0, t)

∂x
=T2

∂ψR(0, t)
∂x

(8)

So the slope must be discontinuous at the boundary to account for the different tensions.

Now we have the boundary conditions. What is the solution?

2 Reflection and transmission

Suppose we have some incoming traveling wave. Before it hits the junction it has the form of a
right-moving traveling wave

ψL(x, t)= ψi(x− v1t), t < 0 (9)

To be clear, ψL(x, t) is the part of ψ(x, t) with x < 0. ψi(x) is some function describing the
wave’s shape in this region. It is easy to check that ψL(x, t) satisfies the wave equation in the

x < 0 region:
[

∂2

∂t2
− v1

2 ∂
2

∂x2

]

ψL(x, t) = 0. The i subscript on ψi(t) refers to the incident wave.

Let t=0 be the time when the first part of the wave hits the knot at x=0.

To be concrete, think of ψi(t) as a square wave. For example ψi(z) = 2mm for −1 cm < z !

0cm and ψi(z) = 0 otherwise. At t=0, ψL(x, 0) is zero outside of −1 cm<x< 0, so it just starts

to hit x= 0. At earlier times, say t1=−
5cm

v1
, then ψL(x, t1) is zero outside of −6 cm<x<−5cm.

So as time goes on, it approaches the junction, and hits it just at t=0. So ψ(x, t) = ψL(x, t)θ(−
x) is a perfectly good solution of the wave equation for t < 0. The real wave doesn’t have to be a
square wave, it can have any shape.

Actually, it will be extremely helpful to make a cosmetic change and write ψi

(

t −
x

v1

)

instead of ψi(x − v1t). Clearly these functions carry the same information, because we just
rescaled the argument. The new form is nicer since at the boundary x= 0, ψi doesn’t depend on

v (so Eq. (12) below has a simple form). So let’s pretend we wrote ψi

(

t −
x

v1

)

from the start of

this section (I didn’t want to actually write it that way from the start to connect more clearly to
what we did before).

Now, after t = 0 ψL can have left and a right moving components, so we can more generally
write

ψL(x, t)= ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)

(10)

where ψr is the reflected wave. Recall that any wave can be written as a sum of left and right
moving waves. So writing ψL this way does not involve any assumptions, it is just convenient to
solve the wave equation including boundary conditions at the junction.

2 Section 2𝜓(0, 𝑡)
𝜓(∆𝑥, 𝑡)

𝜓(−∆𝑥, 𝑡)
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∂ψL(0, t)

∂x
=T2

∂ψR(0, t)
∂x

(8)

So the slope must be discontinuous at the boundary to account for the different tensions.

Now we have the boundary conditions. What is the solution?

2 Reflection and transmission

Suppose we have some incoming traveling wave. Before it hits the junction it has the form of a
right-moving traveling wave

ψL(x, t)= ψi(x− v1t), t < 0 (9)

To be clear, ψL(x, t) is the part of ψ(x, t) with x < 0. ψi(x) is some function describing the
wave’s shape in this region. It is easy to check that ψL(x, t) satisfies the wave equation in the

x < 0 region:
[

∂2

∂t2
− v1

2 ∂
2

∂x2

]

ψL(x, t) = 0. The i subscript on ψi(t) refers to the incident wave.

Let t=0 be the time when the first part of the wave hits the knot at x=0.

To be concrete, think of ψi(t) as a square wave. For example ψi(z) = 2mm for −1 cm < z !

0cm and ψi(z) = 0 otherwise. At t=0, ψL(x, 0) is zero outside of −1 cm<x< 0, so it just starts

to hit x= 0. At earlier times, say t1=−
5cm

v1
, then ψL(x, t1) is zero outside of −6 cm<x<−5cm.

So as time goes on, it approaches the junction, and hits it just at t=0. So ψ(x, t) = ψL(x, t)θ(−
x) is a perfectly good solution of the wave equation for t < 0. The real wave doesn’t have to be a
square wave, it can have any shape.

Actually, it will be extremely helpful to make a cosmetic change and write ψi

(

t −
x

v1

)

instead of ψi(x − v1t). Clearly these functions carry the same information, because we just
rescaled the argument. The new form is nicer since at the boundary x= 0, ψi doesn’t depend on

v (so Eq. (12) below has a simple form). So let’s pretend we wrote ψi

(

t −
x

v1

)

from the start of

this section (I didn’t want to actually write it that way from the start to connect more clearly to
what we did before).

Now, after t = 0 ψL can have left and a right moving components, so we can more generally
write

ψL(x, t)= ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)

(10)

where ψr is the reflected wave. Recall that any wave can be written as a sum of left and right
moving waves. So writing ψL this way does not involve any assumptions, it is just convenient to
solve the wave equation including boundary conditions at the junction.
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Cuerda inhomogénea: condición de contorno

• Entonces, si pensamos en un 
pedacito de masa 𝜇 Δ𝑥, la suma de 
fuerzas a lo largo de la coordenada 
vertical da: 𝜓(0, 𝑡)

𝜓(∆𝑥, 𝑡)

𝜓(−∆𝑥, 𝑡)

The force from the part to the left is T
∆ψ

∆x
≈ T

∂ψ(x, t)

∂x
. This form makes sense, since if the string

has no slope, it is flat and there is no force. From the right, the force is −T
∂ψ(x, t)

∂x
. The sign has

to be opposite so that if there is no difference in slope there is no force (with equal tensions). So
if there are different tensions to the right and left, as at x=0, we have

m
∂2ψ(0, t)
∂t2

=T1
∂ψL(0, t)

∂x
−T2

∂ψR(0, t)
∂x

(6)

Now m is the mass of an infinitesimal point of string at x = 0. But T1 and T2 as well as the
slopes

∂ψL(0, t)

∂x
and

∂ψL(0, t)

∂x
are macroscopic quantities. Thus, if the right hand side doesn’t

vanish, we would find
∂2ψ(0, t)

∂t2
→ ∞ as m → 0. Equivalently, we can write m = µ∆x then this

becomes

µ∆x
∂ψ(0, t)
∂t2

=T1
∂ψL(0, t)
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−T2

∂ψR(0, t)
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(7)

Taking ∆x→ 0 we find
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∂ψL(0, t)
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=T2

∂ψR(0, t)
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(8)

So the slope must be discontinuous at the boundary to account for the different tensions.

Now we have the boundary conditions. What is the solution?

2 Reflection and transmission

Suppose we have some incoming traveling wave. Before it hits the junction it has the form of a
right-moving traveling wave

ψL(x, t)= ψi(x− v1t), t < 0 (9)

To be clear, ψL(x, t) is the part of ψ(x, t) with x < 0. ψi(x) is some function describing the
wave’s shape in this region. It is easy to check that ψL(x, t) satisfies the wave equation in the

x < 0 region:
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∂t2
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2

∂x2

]

ψL(x, t) = 0. The i subscript on ψi(t) refers to the incident wave.

Let t=0 be the time when the first part of the wave hits the knot at x=0.

To be concrete, think of ψi(t) as a square wave. For example ψi(z) = 2mm for −1 cm < z !

0cm and ψi(z) = 0 otherwise. At t=0, ψL(x, 0) is zero outside of −1 cm<x< 0, so it just starts

to hit x= 0. At earlier times, say t1=−
5cm

v1
, then ψL(x, t1) is zero outside of −6 cm<x<−5cm.

So as time goes on, it approaches the junction, and hits it just at t=0. So ψ(x, t) = ψL(x, t)θ(−
x) is a perfectly good solution of the wave equation for t < 0. The real wave doesn’t have to be a
square wave, it can have any shape.

Actually, it will be extremely helpful to make a cosmetic change and write ψi

(

t −
x

v1

)

instead of ψi(x − v1t). Clearly these functions carry the same information, because we just
rescaled the argument. The new form is nicer since at the boundary x= 0, ψi doesn’t depend on

v (so Eq. (12) below has a simple form). So let’s pretend we wrote ψi

(

t −
x

v1

)

from the start of

this section (I didn’t want to actually write it that way from the start to connect more clearly to
what we did before).

Now, after t = 0 ψL can have left and a right moving components, so we can more generally
write

ψL(x, t)= ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)

(10)

where ψr is the reflected wave. Recall that any wave can be written as a sum of left and right
moving waves. So writing ψL this way does not involve any assumptions, it is just convenient to
solve the wave equation including boundary conditions at the junction.
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Cuerda inhomogénea: condición de contorno

• Tomando ∆𝑥 → 0 nos queda

• Esta es la segunda condición de 
contorno para el problema

𝜇T 𝜇6𝑇T 𝑇6

The force from the part to the left is T
∆ψ

∆x
≈ T

∂ψ(x, t)

∂x
. This form makes sense, since if the string

has no slope, it is flat and there is no force. From the right, the force is −T
∂ψ(x, t)

∂x
. The sign has

to be opposite so that if there is no difference in slope there is no force (with equal tensions). So
if there are different tensions to the right and left, as at x=0, we have

m
∂2ψ(0, t)
∂t2

=T1
∂ψL(0, t)

∂x
−T2

∂ψR(0, t)
∂x

(6)

Now m is the mass of an infinitesimal point of string at x = 0. But T1 and T2 as well as the
slopes

∂ψL(0, t)

∂x
and

∂ψL(0, t)

∂x
are macroscopic quantities. Thus, if the right hand side doesn’t

vanish, we would find
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∂t2
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µ∆x
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∂t2

=T1
∂ψL(0, t)

∂x
−T2

∂ψR(0, t)
∂x

(7)

Taking ∆x→ 0 we find

T1
∂ψL(0, t)

∂x
=T2

∂ψR(0, t)
∂x

(8)

So the slope must be discontinuous at the boundary to account for the different tensions.

Now we have the boundary conditions. What is the solution?

2 Reflection and transmission

Suppose we have some incoming traveling wave. Before it hits the junction it has the form of a
right-moving traveling wave

ψL(x, t)= ψi(x− v1t), t < 0 (9)

To be clear, ψL(x, t) is the part of ψ(x, t) with x < 0. ψi(x) is some function describing the
wave’s shape in this region. It is easy to check that ψL(x, t) satisfies the wave equation in the

x < 0 region:
[

∂2

∂t2
− v1

2 ∂
2

∂x2

]

ψL(x, t) = 0. The i subscript on ψi(t) refers to the incident wave.

Let t=0 be the time when the first part of the wave hits the knot at x=0.

To be concrete, think of ψi(t) as a square wave. For example ψi(z) = 2mm for −1 cm < z !

0cm and ψi(z) = 0 otherwise. At t=0, ψL(x, 0) is zero outside of −1 cm<x< 0, so it just starts

to hit x= 0. At earlier times, say t1=−
5cm

v1
, then ψL(x, t1) is zero outside of −6 cm<x<−5cm.

So as time goes on, it approaches the junction, and hits it just at t=0. So ψ(x, t) = ψL(x, t)θ(−
x) is a perfectly good solution of the wave equation for t < 0. The real wave doesn’t have to be a
square wave, it can have any shape.

Actually, it will be extremely helpful to make a cosmetic change and write ψi

(

t −
x

v1

)

instead of ψi(x − v1t). Clearly these functions carry the same information, because we just
rescaled the argument. The new form is nicer since at the boundary x= 0, ψi doesn’t depend on

v (so Eq. (12) below has a simple form). So let’s pretend we wrote ψi

(

t −
x

v1

)

from the start of

this section (I didn’t want to actually write it that way from the start to connect more clearly to
what we did before).

Now, after t = 0 ψL can have left and a right moving components, so we can more generally
write

ψL(x, t)= ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)

(10)

where ψr is the reflected wave. Recall that any wave can be written as a sum of left and right
moving waves. So writing ψL this way does not involve any assumptions, it is just convenient to
solve the wave equation including boundary conditions at the junction.

2 Section 2



Cuerda inhomogénea: solución del problema

• En el lado izquierdo (L) supongamos 
que tenemos una perturbación que 
viene de la derecha (incidente) y la 
perturbación reflejada en la interfase 
en 𝑥 = 0.

• En el lado derecho queda la onda 
transmitida

𝜇T 𝜇6𝑇T 𝑇6

𝜓X 𝜓Y

𝜓Z

The force from the part to the left is T
∆ψ

∆x
≈ T

∂ψ(x, t)

∂x
. This form makes sense, since if the string

has no slope, it is flat and there is no force. From the right, the force is −T
∂ψ(x, t)

∂x
. The sign has

to be opposite so that if there is no difference in slope there is no force (with equal tensions). So
if there are different tensions to the right and left, as at x=0, we have

m
∂2ψ(0, t)
∂t2

=T1
∂ψL(0, t)

∂x
−T2

∂ψR(0, t)
∂x

(6)

Now m is the mass of an infinitesimal point of string at x = 0. But T1 and T2 as well as the
slopes

∂ψL(0, t)

∂x
and

∂ψL(0, t)

∂x
are macroscopic quantities. Thus, if the right hand side doesn’t

vanish, we would find
∂2ψ(0, t)

∂t2
→ ∞ as m → 0. Equivalently, we can write m = µ∆x then this

becomes

µ∆x
∂ψ(0, t)
∂t2

=T1
∂ψL(0, t)

∂x
−T2

∂ψR(0, t)
∂x

(7)

Taking ∆x→ 0 we find

T1
∂ψL(0, t)

∂x
=T2

∂ψR(0, t)
∂x

(8)

So the slope must be discontinuous at the boundary to account for the different tensions.

Now we have the boundary conditions. What is the solution?

2 Reflection and transmission

Suppose we have some incoming traveling wave. Before it hits the junction it has the form of a
right-moving traveling wave

ψL(x, t)= ψi(x− v1t), t < 0 (9)

To be clear, ψL(x, t) is the part of ψ(x, t) with x < 0. ψi(x) is some function describing the
wave’s shape in this region. It is easy to check that ψL(x, t) satisfies the wave equation in the

x < 0 region:
[

∂2

∂t2
− v1

2 ∂
2

∂x2

]

ψL(x, t) = 0. The i subscript on ψi(t) refers to the incident wave.

Let t=0 be the time when the first part of the wave hits the knot at x=0.

To be concrete, think of ψi(t) as a square wave. For example ψi(z) = 2mm for −1 cm < z !

0cm and ψi(z) = 0 otherwise. At t=0, ψL(x, 0) is zero outside of −1 cm<x< 0, so it just starts

to hit x= 0. At earlier times, say t1=−
5cm

v1
, then ψL(x, t1) is zero outside of −6 cm<x<−5cm.

So as time goes on, it approaches the junction, and hits it just at t=0. So ψ(x, t) = ψL(x, t)θ(−
x) is a perfectly good solution of the wave equation for t < 0. The real wave doesn’t have to be a
square wave, it can have any shape.

Actually, it will be extremely helpful to make a cosmetic change and write ψi

(

t −
x

v1

)

instead of ψi(x − v1t). Clearly these functions carry the same information, because we just
rescaled the argument. The new form is nicer since at the boundary x= 0, ψi doesn’t depend on

v (so Eq. (12) below has a simple form). So let’s pretend we wrote ψi

(

t −
x

v1

)

from the start of

this section (I didn’t want to actually write it that way from the start to connect more clearly to
what we did before).

Now, after t = 0 ψL can have left and a right moving components, so we can more generally
write

ψL(x, t)= ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)

(10)

where ψr is the reflected wave. Recall that any wave can be written as a sum of left and right
moving waves. So writing ψL this way does not involve any assumptions, it is just convenient to
solve the wave equation including boundary conditions at the junction.

2 Section 2

For t > 0 there will also be some ψR (the part at x > 0). This part will always be right-
moving. We call this the transmitted wave and write

ψR(x, t) = ψt

(

t−
x

v2

)

(11)

That we can write the wave for x > 0 in this form follows from the assumption that for t < 0
then ψ=0 for x> 0. If there were a left-moving component on the right side, then as t→−∞ it
would always be there. Note that the transmitted wave has wave speed v2, since it is in the
string on the right. Note that we are not assuming that the incident, transmitted and reflected
waves all have the same shape.

The picture is as follows

Figure 1. Incident, reflected and transmitted waves.

Now we impose our boundary conditions. Continuity at x=0, Eq. (5) implies

ψi(t)+ ψr(t) = ψt(t) (12)

For the other boundary condition, Eq. (8), we have

T1
∂ψL(0, t)

∂x
=T1

∂

∂x

[

ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)]

x=0

=
T1

v1
[−ψi

′(t)+ ψr
′(t)] (13)

and

T2
∂ψR(0, t)

∂x
=T2

∂

∂x

[

ψt

(

t−
x

v2

)]

x=0

=−
T2

v2
ψt

′(t) (14)

Thus,
T1

v1
[−ψi

′(t)+ ψr
′(t)] =−

T2

v2
ψt

′(t) (15)

In other words
d

dt

[

−
T1

v1
ψi(t) +

T1

v1
ψr(t)+

T2

v2
ψt(t)

]

=0 (16)

Since a function whose derivative vanishes must be constant, we then have

T1

v1
[−ψi(t)+ ψr(t)] =−

T2

v2
ψt(t)+ const (17)

If the constant were nonzero, it would mean that the wave on the righthand side, ψt has a net
displacement at all times. There is nothing particularly interesting in such a displacement, so we
set the integration constant to zero.

Substituting Eq. (12) into Eq. (17) we get

T1

v1
[−ψi(t) + ψr(t)] =−

T2

v2
[ψi(t)+ ψr(t)] (18)

or
(

T1

v1
+

T2

v2

)

ψr=

(

T1

v1
−

T2

v2

)

ψi(t) (19)

Reflection and transmission 3
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would always be there. Note that the transmitted wave has wave speed v2, since it is in the
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Now we impose our boundary conditions. Continuity at x=0, Eq. (5) implies

ψi(t)+ ψr(t) = ψt(t) (12)

For the other boundary condition, Eq. (8), we have

T1
∂ψL(0, t)

∂x
=T1

∂

∂x

[

ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)]

x=0

=
T1

v1
[−ψi

′(t)+ ψr
′(t)] (13)

and
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v1
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−
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Since a function whose derivative vanishes must be constant, we then have
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displacement at all times. There is nothing particularly interesting in such a displacement, so we
set the integration constant to zero.

Substituting Eq. (12) into Eq. (17) we get
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or
(

T1

v1
+

T2

v2

)

ψr=

(

T1

v1
−

T2

v2

)

ψi(t) (19)

Reflection and transmission 3

Cuerda inhomogénea: solución del problema

• En el lado izquierdo (L) supongamos 
que tenemos una perturbación que 
viene de la derecha (incidente) y la 
perturbación reflejada en la interfase 
en 𝑥 = 0.

• En el lado derecho queda la onda 
transmitida

The force from the part to the left is T
∆ψ

∆x
≈ T

∂ψ(x, t)

∂x
. This form makes sense, since if the string

has no slope, it is flat and there is no force. From the right, the force is −T
∂ψ(x, t)

∂x
. The sign has

to be opposite so that if there is no difference in slope there is no force (with equal tensions). So
if there are different tensions to the right and left, as at x=0, we have

m
∂2ψ(0, t)
∂t2

=T1
∂ψL(0, t)

∂x
−T2

∂ψR(0, t)
∂x

(6)

Now m is the mass of an infinitesimal point of string at x = 0. But T1 and T2 as well as the
slopes

∂ψL(0, t)

∂x
and

∂ψL(0, t)

∂x
are macroscopic quantities. Thus, if the right hand side doesn’t

vanish, we would find
∂2ψ(0, t)

∂t2
→ ∞ as m → 0. Equivalently, we can write m = µ∆x then this

becomes

µ∆x
∂ψ(0, t)
∂t2

=T1
∂ψL(0, t)

∂x
−T2

∂ψR(0, t)
∂x

(7)

Taking ∆x→ 0 we find

T1
∂ψL(0, t)

∂x
=T2

∂ψR(0, t)
∂x

(8)

So the slope must be discontinuous at the boundary to account for the different tensions.

Now we have the boundary conditions. What is the solution?

2 Reflection and transmission

Suppose we have some incoming traveling wave. Before it hits the junction it has the form of a
right-moving traveling wave

ψL(x, t)= ψi(x− v1t), t < 0 (9)

To be clear, ψL(x, t) is the part of ψ(x, t) with x < 0. ψi(x) is some function describing the
wave’s shape in this region. It is easy to check that ψL(x, t) satisfies the wave equation in the

x < 0 region:
[

∂2

∂t2
− v1

2 ∂
2

∂x2

]

ψL(x, t) = 0. The i subscript on ψi(t) refers to the incident wave.

Let t=0 be the time when the first part of the wave hits the knot at x=0.

To be concrete, think of ψi(t) as a square wave. For example ψi(z) = 2mm for −1 cm < z !

0cm and ψi(z) = 0 otherwise. At t=0, ψL(x, 0) is zero outside of −1 cm<x< 0, so it just starts

to hit x= 0. At earlier times, say t1=−
5cm

v1
, then ψL(x, t1) is zero outside of −6 cm<x<−5cm.

So as time goes on, it approaches the junction, and hits it just at t=0. So ψ(x, t) = ψL(x, t)θ(−
x) is a perfectly good solution of the wave equation for t < 0. The real wave doesn’t have to be a
square wave, it can have any shape.

Actually, it will be extremely helpful to make a cosmetic change and write ψi

(

t −
x

v1

)

instead of ψi(x − v1t). Clearly these functions carry the same information, because we just
rescaled the argument. The new form is nicer since at the boundary x= 0, ψi doesn’t depend on

v (so Eq. (12) below has a simple form). So let’s pretend we wrote ψi

(

t −
x

v1

)

from the start of

this section (I didn’t want to actually write it that way from the start to connect more clearly to
what we did before).

Now, after t = 0 ψL can have left and a right moving components, so we can more generally
write

ψL(x, t)= ψi

(

t−
x

v1

)

+ ψr

(

t+
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v1

)

(10)

where ψr is the reflected wave. Recall that any wave can be written as a sum of left and right
moving waves. So writing ψL this way does not involve any assumptions, it is just convenient to
solve the wave equation including boundary conditions at the junction.
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moving. We call this the transmitted wave and write
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Coeficientes de transmision y reflexión

• Esto quiere decir que si la derivada es nula

• Esa constante debe ser cero si no un desplazamiento no nulo no tiene 
mucho sentido
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Coeficientes de transmision y reflexión

• Entonces, reemplazando 𝜓Y según la ecuación de continuidad

• Y reagrupando términos, tenemos:
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′(t)+ ψr
′(t)] (13)

and

T2
∂ψR(0, t)

∂x
=T2

∂

∂x

[

ψt

(

t−
x

v2

)]

x=0

=−
T2

v2
ψt

′(t) (14)

Thus,
T1

v1
[−ψi

′(t)+ ψr
′(t)] =−

T2

v2
ψt

′(t) (15)

In other words
d

dt

[

−
T1

v1
ψi(t) +

T1

v1
ψr(t)+

T2

v2
ψt(t)

]

=0 (16)

Since a function whose derivative vanishes must be constant, we then have

T1

v1
[−ψi(t)+ ψr(t)] =−

T2

v2
ψt(t)+ const (17)

If the constant were nonzero, it would mean that the wave on the righthand side, ψt has a net
displacement at all times. There is nothing particularly interesting in such a displacement, so we
set the integration constant to zero.

Substituting Eq. (12) into Eq. (17) we get

T1

v1
[−ψi(t) + ψr(t)] =−

T2

v2
[ψi(t)+ ψr(t)] (18)

or
(

T1

v1
+

T2

v2

)

ψr=

(

T1

v1
−

T2

v2

)

ψi(t) (19)
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Coeficientes de transmision y reflexión

• Ahora definamos las cantidades

• Entonces, la relación anterior implica que:

which implies

ψr=

T1

v1

−
T2

v2

T1

v1

+ T2

v2

ψi (20)

We have found that the reflective wave has exactly the same shape as the incident wave, but
with a different overall magnitude. By Eq. (12) the transmitted wave also has the same shape.
The relevant amplitudes are the main useful formulas coming out of this analysis.

Defining

Z1=
T1

v1
, Z2=

T2

v2
(21)

we have

ψr=
Z1−Z2

Z1+Z2
ψi (22)

Substituting back in to Eq. (12) we get

ψt=
2Z1

Z1+Z2
ψi (23)

Sometimes this solution is written as

ψr=Rψi, ψt=Tψi (24)

where

R=
Z1−Z2

Z1+Z2
(25)

is the reflection coefficient and

T =
2Z1

Z1+Z2
(26)

is the transmission coefficient.
Z is known as an impedance. In this case it’s tension over velocity, but more generally

Impedance is force divided by velocity

That is, impedance tells you how much force is required to impart a certain velocity. Imped-
ance is a property of a medium. In this case, the two strings have different tensions and different

velocities. Using v= T

µ

√

we can write

Z =
T

v
= Tµ
√

(27)

Note that as Z1 = Z2 there is no reflection and complete transmission. If we want no reflection
we need to match impedances. For example, if we want to impedance-match across two
strings with different mass densities µ1 and µ2 we can choose the tensions to be T2 = µ1

µ2

T1 so
that

Z2= T2µ2
√

=
µ1

µ2
T1µ2

√

= T1µ1
√

=Z1 (28)

Thus the impedances can agree in strings of different mass density.
Note that the transmission coefficient is greater than 1 if Z1<Z2. That means the amplitude

increases when a wave travels from a medium of lower impedance to a medium of higher imped-
ance. This is an important fact. We’ll discuss a consequence in Section 7.1 below.

3 Phase flipping

What happens when a wave hits a medium of higher impedance, such as when the tension or
mass density of the second string is very large? Then Z2 > Z1 and so, R = Z1−Z2

Z1+Z2

< 0. Thus, if

ψi > 0 then ψr < 0. That is, the wave flips its sign. This happens in particular if the wave hits a
wall, which is like µ=∞.
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Coeficientes de transmision y reflexión

• Por otro lado, como 

• Tenemos
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(21)
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ψt=
2Z1

Z1+Z2
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Sometimes this solution is written as

ψr=Rψi, ψt=Tψi (24)

where
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Z1−Z2

Z1+Z2
(25)

is the reflection coefficient and

T =
2Z1

Z1+Z2
(26)

is the transmission coefficient.
Z is known as an impedance. In this case it’s tension over velocity, but more generally

Impedance is force divided by velocity

That is, impedance tells you how much force is required to impart a certain velocity. Imped-
ance is a property of a medium. In this case, the two strings have different tensions and different

velocities. Using v= T

µ

√

we can write

Z =
T

v
= Tµ
√

(27)

Note that as Z1 = Z2 there is no reflection and complete transmission. If we want no reflection
we need to match impedances. For example, if we want to impedance-match across two
strings with different mass densities µ1 and µ2 we can choose the tensions to be T2 = µ1

µ2

T1 so
that

Z2= T2µ2
√

=
µ1

µ2
T1µ2

√

= T1µ1
√

=Z1 (28)

Thus the impedances can agree in strings of different mass density.
Note that the transmission coefficient is greater than 1 if Z1<Z2. That means the amplitude

increases when a wave travels from a medium of lower impedance to a medium of higher imped-
ance. This is an important fact. We’ll discuss a consequence in Section 7.1 below.

3 Phase flipping

What happens when a wave hits a medium of higher impedance, such as when the tension or
mass density of the second string is very large? Then Z2 > Z1 and so, R = Z1−Z2

Z1+Z2

< 0. Thus, if

ψi > 0 then ψr < 0. That is, the wave flips its sign. This happens in particular if the wave hits a
wall, which is like µ=∞.
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For t > 0 there will also be some ψR (the part at x > 0). This part will always be right-
moving. We call this the transmitted wave and write

ψR(x, t) = ψt

(

t−
x

v2

)

(11)

That we can write the wave for x > 0 in this form follows from the assumption that for t < 0
then ψ=0 for x> 0. If there were a left-moving component on the right side, then as t→−∞ it
would always be there. Note that the transmitted wave has wave speed v2, since it is in the
string on the right. Note that we are not assuming that the incident, transmitted and reflected
waves all have the same shape.

The picture is as follows

Figure 1. Incident, reflected and transmitted waves.

Now we impose our boundary conditions. Continuity at x=0, Eq. (5) implies

ψi(t)+ ψr(t) = ψt(t) (12)

For the other boundary condition, Eq. (8), we have

T1
∂ψL(0, t)

∂x
=T1

∂

∂x

[

ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)]

x=0

=
T1

v1
[−ψi

′(t)+ ψr
′(t)] (13)

and

T2
∂ψR(0, t)

∂x
=T2

∂

∂x

[

ψt

(

t−
x

v2

)]

x=0

=−
T2

v2
ψt

′(t) (14)

Thus,
T1

v1
[−ψi

′(t)+ ψr
′(t)] =−

T2

v2
ψt

′(t) (15)

In other words
d

dt

[

−
T1

v1
ψi(t) +

T1

v1
ψr(t)+

T2

v2
ψt(t)

]

=0 (16)

Since a function whose derivative vanishes must be constant, we then have

T1

v1
[−ψi(t)+ ψr(t)] =−

T2

v2
ψt(t)+ const (17)

If the constant were nonzero, it would mean that the wave on the righthand side, ψt has a net
displacement at all times. There is nothing particularly interesting in such a displacement, so we
set the integration constant to zero.

Substituting Eq. (12) into Eq. (17) we get

T1

v1
[−ψi(t) + ψr(t)] =−

T2

v2
[ψi(t)+ ψr(t)] (18)

or
(

T1

v1
+

T2

v2

)

ψr=

(

T1

v1
−

T2

v2

)

ψi(t) (19)
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Coeficientes de transmision y reflexión

• En otras palabras, quedaron definidos los coeficientes de transmisión 
𝑇 y reflexión 𝑅 tales que las ondas reflejada y transmitida quedan en 
función de la incidente:

• 𝑅 y 𝑇 quedan definidas a partir de las impedancias 𝑍1 y 𝑍2:

which implies

ψr=

T1

v1

−
T2

v2

T1

v1

+ T2

v2

ψi (20)

We have found that the reflective wave has exactly the same shape as the incident wave, but
with a different overall magnitude. By Eq. (12) the transmitted wave also has the same shape.
The relevant amplitudes are the main useful formulas coming out of this analysis.

Defining

Z1=
T1

v1
, Z2=

T2

v2
(21)

we have

ψr=
Z1−Z2

Z1+Z2
ψi (22)

Substituting back in to Eq. (12) we get

ψt=
2Z1

Z1+Z2
ψi (23)

Sometimes this solution is written as

ψr=Rψi, ψt=Tψi (24)

where

R=
Z1−Z2

Z1+Z2
(25)

is the reflection coefficient and

T =
2Z1

Z1+Z2
(26)

is the transmission coefficient.
Z is known as an impedance. In this case it’s tension over velocity, but more generally

Impedance is force divided by velocity

That is, impedance tells you how much force is required to impart a certain velocity. Imped-
ance is a property of a medium. In this case, the two strings have different tensions and different

velocities. Using v= T

µ

√

we can write

Z =
T

v
= Tµ
√

(27)

Note that as Z1 = Z2 there is no reflection and complete transmission. If we want no reflection
we need to match impedances. For example, if we want to impedance-match across two
strings with different mass densities µ1 and µ2 we can choose the tensions to be T2 = µ1

µ2

T1 so
that

Z2= T2µ2
√

=
µ1

µ2
T1µ2

√

= T1µ1
√

=Z1 (28)

Thus the impedances can agree in strings of different mass density.
Note that the transmission coefficient is greater than 1 if Z1<Z2. That means the amplitude

increases when a wave travels from a medium of lower impedance to a medium of higher imped-
ance. This is an important fact. We’ll discuss a consequence in Section 7.1 below.

3 Phase flipping

What happens when a wave hits a medium of higher impedance, such as when the tension or
mass density of the second string is very large? Then Z2 > Z1 and so, R = Z1−Z2

Z1+Z2

< 0. Thus, if

ψi > 0 then ψr < 0. That is, the wave flips its sign. This happens in particular if the wave hits a
wall, which is like µ=∞.
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Condiciones de contorno: extremo fijo

• Experimento: Fijamos un extremo de la 
cuerda de una pared (condición de 
extremo fijo).
• Esto quiere decir que en la pared, siempre:

• 𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒, 
• En particular 𝑦 = 0

• Notamos que pulso se ‘refleja’ y vuelve 
con la amplitud invertida.
• La pared genera un pulso igual pero 

opuesto en amplitud y velocidad de modo 
que 𝑦 = 0 en la pared siempre.

Pa
re

d

𝑦

𝑥



Condiciones de contorno: extremo libre

• Experimento: En un extremo ponemos un 
anillo angarzado a un alambre vertical  sin 
rozamiento (condición de extremo libre).
• Esto quiere decir que en ese extremo:

𝜕𝑦
𝜕𝑥

= 0

• Notamos que pulso se ‘refleja’ y vuelve 
con la amplitud sin invertir.
• El alambre genera un pulso igual pero 

opuesto en velocidad de modo de que 
@1
@B = 0 en ese extremo.

al
am

br
e 

ve
rt

ic
al

𝑦

𝑥



Ondas estacionarias



Ondas estacionarias

• Vimos que la ecuación de onda 
admitía soluciones viajeras en 
ambos sentidos de propagación.

• Supongamos entonces dos ondas

𝑓± 𝑥, 𝑡 = 𝐴 sin(𝑘𝑥 ± 𝜔𝑡)

• La suma de ambas es también 
una solución

𝑦

𝑥

𝑓d

𝑓e

𝑓e + 𝑓d



Ondas estacionarias

• Sumemos 𝑓e + 𝑓d

𝐴(sin 𝑘𝑥 + 𝜔𝑡 + sin(𝑘𝑥 − 𝜔𝑡)) =
𝐴(sin 𝑘𝑥 cos𝜔𝑡 + cos 𝑘𝑥 sin𝜔𝑡
+ sin 𝑘𝑥 cos𝜔𝑡 − cos 𝑘𝑥 sin𝜔𝑡) =

• El resultado da una onda estacionaria

𝑓e + 𝑓d = 2𝐴 sin 𝑘𝑥 cos𝜔𝑡

𝑦

𝑥

𝑓d

𝑓e

𝑓e + 𝑓d

𝑥

𝑥

Parte espacial Parte temporal



Ondas estacionarias

• Los nodos son los lugares donde la onda 
siempre es cero.
• Estos son los valores de 𝑥f tales que:

sin 𝑘𝑥f = 0
• Esto equivale a que para un 𝑛 natural o cero

𝑘𝑥f = 𝑛𝜋
• O bien 

𝑥f =
𝑛𝜋
𝑘
=
𝑛𝜆
2

𝑦

𝑥

𝑓d

𝑓e

𝑓e + 𝑓d

𝑥

𝑥

nodo



Cuerda con condiciones de contorno

• Vimos que la presencia de una condición de contorno generaba 
reflexión de ondas.

• Si tenemos una onda sinusoidal en una cuerda de largo 𝐿 con 
condiciones de contorno en los extremos seguramente tendremos 
soluciones estacionarias.

• No nos vamos a preguntar cómo se genera la onda, simplemente de 
qué modo va a oscilar con las condiciones de contorno establecidas.



Modos normales con 2 extremos fijos 

• Veamos una cuerda de largo 𝐿 con 
extremos fijos

• Las condiciones de contorno son:

Condición 1: 𝑦 0, 𝑡 = 0
Condición 2: 𝑦 𝐿, 𝑡 = 0

• Estas condiciones van a hacer que 
la solución estacionaria tenga 
nodos en lugares bien específicos.

𝑦

𝑥𝐿0



Modos normales con 2 extremos fijos 

• Tomemos una solución de tipo 
estacionaria:

𝑦f(𝑥, 𝑡) = 𝐴f sin 𝑘f𝑥 cos𝜔f𝑡

• La condición 1 se satisface 
automáticamente pues: 

𝑦f 0, 𝑡 = 𝐴f sin 𝑘f0 cos𝜔f𝑡 = 0

𝑦

𝑥𝐿0



Modos normales con 2 extremos fijos 

• La condición 2 pide que: 

sin 𝑘f𝐿 = 0

• Esto implica que, para 𝑛 natural

𝑘f𝐿 = 𝑛𝜋
luego

𝑘f =
𝑛𝜋
𝐿

o 

𝜆f =
2𝐿
𝑛

𝑦

𝑥𝐿0



Primeros modos normales



Modo fundamental
o primer armónico

segundo armónico

tercer armónico

cuarto armónico

Estos son los modos naturales de oscilación de una cuerda de largo L



Modos normales con 2 extremos fijos 

• Todas son soluciones, por lo tanto la solución definitiva es la suma de las 
soluciones para cada valor de 𝒏:

𝑦 𝑥, 𝑡 = i
fjT

k

𝑦f(𝑥, 𝑡) = i
fjT

k

𝐴f sin 𝑘f𝑥 cos𝜔f𝑡

donde 𝑘f =
fP
V y 𝜔f = 𝑣𝑘f =

D
C
fP
V



Instrumentos de cuerda

John Williams, guitarrista



Modos normales condición fijo/libre

• Veamos una cuerda de largo 𝐿 con 
condición fijo / libre

• Las condiciones de contorno son:

Condición 1: 𝑦 0, 𝑡 = 0

Condición 2: l1lB 𝐿, 𝑡 = 0

𝑦

𝑥𝐿0



Modos normales condición fijo/libre

• Tomemos una nuevamente una 
solución de tipo estacionaria:

𝑦f(𝑥, 𝑡) = 𝐴f sin 𝑘f𝑥 cos𝜔f𝑡

• La condición 1 se satisface 
automáticamente pues: 

𝑦f 0, 𝑡 = 𝐴f sin 𝑘f0 cos𝜔f𝑡 = 0

𝑦

𝑥𝐿0



Modos normales condición fijo/libre

• La condición 2 pide que:

𝜕𝑦
𝜕𝑥 𝐿, 𝑡 = 𝑘f𝐴f cos 𝑘f𝐿 cos𝜔f𝑡 = 0

• Es decir
cos 𝑘f𝐿 = 0

• Esto implica que, para 𝑛 = 0, 1, 2, 3 …

𝑘f𝐿 =
𝜋
2 + 𝑛𝜋 =

𝜋(2𝑛 + 1)
2

luego

𝑘f =
𝜋(2𝑛 + 1)

2𝐿

𝑦

𝑥𝐿0



Modos normales condición fijo/libre

• La condición 2 pide que:

𝑑𝑦
𝑑𝑥

𝐿, 𝑡 = 𝑘f𝐴f cos 𝑘f𝐿 cos𝜔f𝑡 = 0

• Es decir
cos 𝑘f𝐿 = 0

• Esto implica que, para 𝑛 = 0, 1, 2, 3 …

𝑘f𝐿 =
𝜋
2 + 𝑛𝜋 =

𝜋(2𝑛 + 1)
2

luego

𝑘f =
𝜋(2𝑛 + 1)

2𝐿

𝑦

𝑥𝐿0



n 𝜆f =
4𝐿

2𝑛 + 1
0 𝜆M = 4𝐿

1 𝜆T =
4𝐿
3

2 𝜆6 =
4𝐿
5

3 𝜆q =
4𝐿
7

4 𝜆s =
4𝐿
9



Modos normales con condición fijo/libre

• Todas son soluciones, por lo tanto la solución definitiva es la suma de las 
soluciones para cada valor de 𝒏:

𝑦 𝑥, 𝑡 = i
fjM

k

𝑦f(𝑥, 𝑡) = i
fjM

k

𝐴f sin 𝑘f𝑥 cos𝜔f𝑡

donde 𝑘f =
P(6feT)

6V y 𝜔f = 𝑣𝑘f =
D
C
P(6feT)

6V



Ondas longitudinales



Ondas longitudinales: sonido

• Las ondas en el aire son como las en un sólido.
• Las moléculas de aire son como pequeñas masas y las fuerzas actúan 

como pequeños resortes. 
• Ya derivamos la ecuación de onda
• En el caso de las ondas sonoras, la cantidad que oscila es el 

desplazamiento de un pedacito de aire desde su posición de 
equilibrio 𝜉(𝑥, 𝑡)

Equilibrio en 𝑥

𝜉(𝑥, 𝑡)





Ondas longitudinales: sonido

𝑥

𝑃

𝑃wYx

moléculas de aire

𝑣 ≅ 340 𝑚/𝑠 FIJA  !!

𝑃wYx = 1013, 25 hPa



Ondas sonoras: condición cerrado/cerrado

• Tomamos un recipiente con aire 
cerrado en ambos extremos.

• Se generan ondas sonoras viajeras 
a lo largo de 𝑥.

• El choque con las paredes va a 
generar ondas en sentido contrario 
generando ondas estacionarias.

𝐿

𝑦

𝑥
𝑥

𝜉(𝑥, 𝑡)>0 𝜉(𝑥, 𝑡)<0 



Pregunta

• ¿Cómo se expresarán las 
condiciones de contorno para 
𝜉(𝑥, 𝑡) en el caso cerrado cerrado? 

𝐿

𝑦

𝑥
𝑥

𝜉(𝑥, 𝑡)>0 𝜉(𝑥, 𝑡)<0 


