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Abstract
We examine the theoretical and experimental foundations of Coulomb’s
Law and review the various roles it plays not only in electromagnetism and
electrodynamics, but also in quantum mechanics, cosmology, and
thermodynamics. The many implications of Coulomb’s Law draw attention
to its fundamental importance within virtually all branches of physics and
make this elementary yet profound law one of the most useful of all
scientific tools.

1. Introductory historical outlook

Few investigations in physics have enjoyed as sustained an
interest as have tests of Coulomb’s Law. As has been
the case with most of the fundamental laws of physics, it
was discovered and elucidated through observations of basic
phenomena. In his research, Coulomb was interested in the
mutual interactions between electric charges, a topic that had
been studied previously by Priestley [1], and in fact even
earlier, in 1755, during the experimental work of Franklin [2].

Franklin (1706–1790) was an American printer, writer,
politician, diplomat, and scientist. He is credited with the
invention of such practical everyday items as bifocal eyeglasses
and a free-standing, wood-burning heater called the ‘Franklin
stove’. His principal connection to electrical experimentation
came via his investigations of the properties of Leyden Jars4.
He is also commonly credited with giving the names ‘positive’
and ‘negative’ to the two opposite species of electrical charge,
although his assignment convention was eventually reversed.

Also living in America at the time was Priestley
(1733–1804)5, an English chemist and amateur natural

4 In 1752, he flew a kite attached to a silk string in a thunderstorm, and showed
that a metal key tied to the thread would charge a Leyden jar. (Incidentally,
the next two people who attempted the experiment were killed in the effort.)
His experiments with Leyden jars showed that they discharged more easily if
near a pointed surface. He thus suggested the use of lightning rods.
5 The objects of his chemical studies included ‘fixed air’ (carbon dioxide),
‘nitrous air’ (nitric oxide), ‘marine acid air’ (hydrogen chloride), ‘alkaline air’
(ammonia), ‘vitriolic air’ (sulfur dioxide), ‘phlogisticated nitrous air’ (nitrous
oxide, laughing gas), and ‘dephlogisticated air’ (oxygen). His chemical
writings were published in the three-volume Experiments and Observations

philosopher who had broad scientific interests in physics,
electricity, magnetism, and optics, in addition to chemistry. He
was a politically involved Unitarian preacher and a sympathizer
with the French Revolution, and these aspects of his life forced
him to move to America with his family in 1794. Priestley
is credited with the discovery of oxygen in 1774, which he
produced by focusing sunlight on mercuric oxide. During his
studies of this ‘dephlogisticated air’, he noticed that it made
him light-headed and that it had a similar effect on animals.

The background studies underpinning Coulomb’s Law
began when Franklin took a small sphere made of cork
and placed it inside a charged metallic cup (see figure 1)
and observed that it did not move, suggesting that there
was no interaction between it and the cup. After Franklin
communicated his finding to Priestley, the Englishman
explained the phenomenon in 1767, providing a line of
reasoning analogous to that used by Newton [3] to formulate
and enunciate the law of universal gravitation.

Underlying Newtonian gravity was the observation that
the gravitational field inside a spherical shell of homogeneous
material is null if the field is inversely proportional to the
square of the distance r , i.e. if its intensity goes as r−2.
By approximating Franklin’s cup as a spherical shell, Priestley
deduced that the observed phenomenon should be physically

on Different Kinds of Airs (1774–1777) and in the three-volume Experiments
and Observations Relating to Various Branches of Natural Philosophie
(1779–1786). By dissolving fixed air in water, he invented carbonated
water. He also noticed that the explosion of inflammable air with common
air produced dew. Lavoisier repeated this experiment and took credit for
it. Priestley believed in the phlogiston theory, and was convinced that his
discovery of oxygen proved it to be correct.
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Figure 1. Franklin placed a small sphere made of cork inside a
metallic cup, and when this was charged he observed that the sphere
did not move, suggesting that there was no interaction between it
and the cup. Priestley explained the phenomenon in 1767, providing
a line of reasoning analogous to that used by Newton for the law of
universal gravitation, implying that the field has an inverse square
dependence on distance. In the subsequent tests, instead of the cork
sphere inside a metallic cup, experimentalists considered a metallic
shell enclosed within an outer charged shell or several
concentric shells.

analogous to the gravitational case and he thus concluded that
the electric force, like the gravitational force, must depend on
distance as r−2. The lack of an observed ponderable force
on the cork sphere inside the charged spherical shell was thus
evidence of an inverse square law behaviour in the electric
force.

Franklin’s work also served as inspiration for the efforts
of Aepinus (1724–1802) [4], a German physicist6. He
made experimental and theoretical contributions to the study
of electricity and in 1759 proposed in a theoretical essay,
written in Latin, the existence of two types of electric charges
(positive and negative) and a 1/r2 behaviour of the electric
force. His conjectures were made in analogy to what Newton
had proposed in order to explain Kepler’s Law, the free
fall of bodies near the Earth’s surface, and the outcome
of Cavendish’s laboratory experiment that investigated the
gravitational attraction between lead spheres [5].

All of these early qualitative phenomenological and
theoretical studies paved the way for the eventual quantitative
verification of the basic law describing the electrical force. In
fact, the essay of Aepinus was read by Robison (1739–1805)
[6], an English physician who in 1769 carried out experimental
tests of the inverse square law and used the results to surmise
that it was indeed correct. His determination was made
somewhat before that of Coulomb, but history has given the
name of this interaction to the latter.

2. Early experimental verifications of Coulomb’s
Law

Robison’s experiment was very straightforward. He measured
the repulsive force between two charged masses, equilibrated

6 He studied at Jena and Rostock and taught mathematics at Rostock from
1747 to 1755. After a brief stay in Berlin he went to St Petersburg as professor
of physics and academician, remaining there until 1798 and rising to a high
position as courtier to Catherine the Great.

by the force of gravity acting on them. By knowing
their weight, and by repeating the measurements at different
distances, it was possible to calculate the size of the electrical
force, evaluate its dependence on distance, and thus verify the
exactness of the hypothesized 1/r2 law.

From his observations, Robison deduced that the law must
have the functional form

F ∝ 1

r2±ε
, (1)

where ε represents a measure of the precision to which the
1/r2 behaviour is verified. He found an upper limit of
0.06 for ε and thus could state that for masses in electrical
repulsion to each other, the force went as r−2.06. However,
for electrical attraction his limit was weaker, stated as r−c

where c < 2, but still essentially confirming the expected
r−2 dependence. Unfortunately, Robison did not publish
his results until 1801, and by then Coulomb [7] had already
presented his. The parameter ε appearing in equation (1) and
related to the precision of the 1/r2 behaviour, is not very
useful from a theoretical point of view but is retained here
because of its common historical use. Subsequent theoretical
developments and improved understanding of the foundations
for high precision tests of Coulomb’s Law have led to the use
of the quantity µ = mγ c/h̄ = λ−1

C which, as considered below,
is well motivated theoretically and represents the inverse
Compton wavelength of a photon of mass mγ . Coulomb’s
Law is violated if µ �= 0, i.e. if the photon mass is not zero.

Before discussing Coulomb’s experiment, we note that
Cavendish, in addition to his celebrated measurement of the
mean density of the Earth, also carried out an early experiment
on the physics of the electrical force. Inspired by the same idea
that motivated his predecessors, he too considered a metallic
spherical shell enclosed within an outer shell consisting of
two hemispheres that could be opened or closed. In the closed
position, the two hemispheres were connected electrically to an
electrostatic machine and charged while in ohmic contact with
the inner sphere. The hemispheres were then disconnected
from the inner sphere and opened, and it was verified that they
remained charged. At this point, an electrometer was used to
check that the inner sphere was still uncharged, thus confirming
the 1/r2 law but with an uncertainty that was smaller than that
of Robison (less than 1/60 of the charge moved to the inner
shell over the thin wire interconnecting the two spheres). With
reference to equation (1), Cavendish obtained ε � 0.03 . An
improved version of the experiment was later performed by
Maxwell [8], who increased the precision of the test and found
that the exponent of r in Coulomb’s Law could differ from 2
by no more than ε � 5 × 10−5.

We now turn to the famous experiment of Coulomb of
1788. Charles Augustin de Coulomb (1736–1806) was a
French physicist and a pioneer in electrical theory. He was
born in Angoulême. He served as a military engineer for
France in the West Indies, but retired to Blois at the time of
the French Revolution to continue his research on magnetism,
friction, and electricity. In 1777, he invented the torsion
balance for the purpose of measuring the force of magnetic
and electrical attractions. With this device, Coulomb was
able to formulate the principle, now known as Coulomb’s
Law, governing the interaction between electric charges. In
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Figure 2. The Coulomb torsion balance was similar in principle to
the torsion balance used by Cavendish for measurement of the
gravitational attraction between masses. The interaction between
the charged spheres produces a measurable twist in the torsion fibre,
which lets the apparatus rotate until equilibrium is reached. By
accurately measuring the torsion angle, Coulomb confirmed the
1/r2 law with a precision surpassing that of the previous
experiments of Robison and Cavendish.

1779, Coulomb published the treatise Théorie des machines
simples (Theory of Simple Machines), an analysis of friction
in machinery. After the war Coulomb came out of retirement
and assisted the new government in devising a metric system
of weights and measures. The unit of quantity used to measure
electrical charges, the coulomb, was named for him.

His torsion balance, shown in figure 2, was similar in
principle to that used by Cavendish for the measurement of
the mean density of the Earth (now interpreted as a seminal
laboratory test of Newtonian gravitation). The interaction
between the charged spheres produces a torque that acts
on the torsion fibre, with the apparatus then rotating until
equilibrium is reached. By accurately measuring the torsion
angle, Coulomb found a limiting value for ε in equation (1)
of ε � 0.01, thus surpassing the precision of the previous
experiments of Robison and Cavendish. The scalar expression
for what has come to be known as Coulomb’s Law says that the
force F between two charges q1 and q2 separated by a distance
r may be written in the simple form

F = k
q1q2

r2
, (2)

where the value of the constant of proportionality, k, will be
considered in section 7.

The reasons why Coulomb achieved greater success and
recognition than did his predecessors are essentially two. First,
he performed his tests with combinations of both negative
and positive charges. Cavendish used only charges of the
same sign, but Coulomb sought to measure both attractive and
repulsive forces. Second, he published his results immediately,
while Robison did not make his findings available until 1801,
thirteen years after Coulomb. Cavendish too delayed the
dissemination of his work, and it thus garnered no attention
until nearly a century later when a citation to it was given
by Maxwell in his famous essay [8]. Coulomb’s prompt

publication of his results may signal that he was more aware
than his colleagues of how fundamental and important this
work was.

3. Null tests of Coulomb’s Law: theory

The technique employed by Cavendish has been used in most
of the experimental work done since then, as it turned out
to be potentially the most sensitive. It is intrinsically a null
experiment, in the sense that the experimentalist seeks to verify
with great precision the absence of charge from the inner
sphere, rather than having to measure with less precision a
non-null physical quantity, such as the twist in the fibre, as in
the torsion balance approach.

Following Robison and Maxwell and supposing that the
exponent in Coulomb’s Law is not −2 but −(2 + ε), to first
order in ε the electric potential at a point r due to the charge
density distribution ρ(r′) is given by

V (r) =
∫

d3r′ ρ(r′)
| r − r′ |1+ε

. (3)

If the charge is uniformly distributed on a spherical shell
of radius a > r , then ρ(r ′, θ ′, ϕ′) = σδ(r − a) and we
may arbitrarily choose r to coincide with the z axis and
expression (3) becomes

V (r) =
∫

σ sin θ ′ dθ ′ dϕ′

(r2 + a2 − 2ar cos θ ′)(1+ε)/2

=
∫ +1

−1

d cos θ ′

(r2 + a2 − 2ar cos θ ′)(1+ε)/2

= f (r + a) − f (r − a)

2ar
. (4)

In the case where Coulomb’s Law is perfectly valid,
ε = 0 and

V (r) = 2πρ

∫ +1

−1

d(cos θ ′)
(r2 + a2 − 2ar cos θ ′)1/2

= 1

a
= const,

(5)

so that V (r)−V (a) = 0 and the electric field inside the charged
spherical shell vanishes. Thus, in tests of Coulomb’s Law, we
are interested in the potential induced on a sphere of radius
r by a charge distributed uniformly on a concentric sphere of
radius a > r , i.e.

V (r) − V (a)

V (a)
= a

r

[
f (a + r) − f (a − r)

f (2a)

]
− 1. (6)

To first order in ε, equation (6) yields

V (r) − V (a)

V (a)
= εM(a, r), (7)

where

M(a, r) = 1

2

[
a

r
ln

(
a + r

a − r

)
− ln

(
4a2

a2 − r2

)]
. (8)

Since M(a, r) turns out to be of order unity, ε is essentially
the quotient [V (r) − V (a)]/V (a) of the measured potential
difference, V (r) − V (a), and the applied voltage, V (a).
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As an alternative to equations (7) and (8), de Broglie [9]
considered a simple generalization of Maxwell’s equations
involving a small non-zero rest mass of the photon. In this
case, two charges will repel each other by a Yukawa force
derived from the potential

U(r) = e−µr

r
= e−r/λC

r
, (9)

where µ = mγ c/h̄ = λ−1
C is the inverse Compton wavelength

of the photon. In the limit µa � 1, U(r) = 1/r − µ + 1
2µ2r

and equation (6) yields

V (r) − V (a)

V (a)
= −1

6
µ2(a2 − r2). (10)

Although U(r) contains the term µ, what is tested
experimentally is the result of equation (10). Since the other
tests of Coulomb’s Law are explicitly sensitive to µ2 and not to
µ, the quadratic dependence of V (r)−V (a) on µ makes a test
based on this approach comparable to other tests. Thus, the
potential difference V (r)−V (a) is not zero if Coulomb’s Law
is invalid or, equivalently, if the photon rest mass is non-zero.
For direct tests of Coulomb’s Law that consist of measuring
the static potential difference of charged concentric shells, one
may use either equation (7) or equation (10). However, one can
also test Coulomb’s Law by determining µ with independent,
indirect methods. In general, these would rely on either finding
possible variations due to the presence of the Yukawa potential
(9) or on the standard fields of massless electrodynamics, such
as, e.g., measurements at either large distances or long times,
where the percentage effect would be much higher. Typical
of these approaches are those that involve the magnetic field
of the Earth. For example, one might consider (a) satellite
verification that the magnetic field of the Earth falls off as
1/r3 out to distances at which the solar wind is appreciable
[10], (b) observation of the propagation of hydromagnetic
waves through the magnetosphere [11], (c) application of the
Schrödinger external field method [12], or other methods such
as those described below. The three approaches outlined above
should all give roughly the same limit, µ � 10−11 cm−1.

In the high-frequency (direct) null test of Coulomb’s Law
described below, it is convenient to start from a relativistically
invariant linear generalization of Maxwell’s equations, namely
the Proca equations [13], which allow for a finite rest mass of
the photon. Proca’s equations for a particle of spin 1 and mass
mγ are [14]

(� + µ2)Aν = 4π

c
Jν (11)

and Gauss’ Law becomes

∇ · E = 4πρ − µ2ϕ. (12)

Equation (12) may be applied to two concentric,
conducting, spherical shells of radii r and a (a > r) with an
inductor across (i.e. in parallel with) this spherical capacitor.
If a potential V0eiωt is applied to the outer shell, the resulting
electric field is [15]

E(r) = (
qr−2 − 1

3µ2V0eiωt r
)
r̂ , (13)

where q is the total charge on the inner shell.

The voltage across the inductor of capacity C is then
given [15] by

V (r) − V (a) =
∫ a

r

E · dl = q

C
− µ2 V0eiωt

6
(a2− r2). (14)

Save for the standard term q/C (which is zero when there
is no charge on the inner shell), the term dependent on µ in
equation (14) coincides with that of equation (10).

4. Direct tests of Coulomb’s Law

After the development of the phase-sensitive detectors such
as lock-in amplifiers, new and more sensitive attempts to test
Coulomb’s Law were made such as the ones by Plimpton
and Lawton [16], Cochran and Franken [17], and Bartlett
and Phillips [18]. In this section, we consider Maxwell’s
derivation (equations (6) and (7)) applied to the simple case
of a conducting sphere containing a smaller concentric sphere.
The potential of the outer sphere is raised to a value V and
the potential difference between them is measured. The actual
shape of these conductors should not be relevant because the
electric field inside a cavity of any shape vanishes unless
Coulomb’s Law is violated. Thus, Cochran and Franken [17]
could use conducting rectangular boxes in their experiment
and set a limit of ε � 0.9 × 10−11.

The experiments of both Cavendish and Maxwell required
connecting the inner sphere to an electrometer. The accuracy
of the experiment was thus limited by fluctuations in the
contact potentials while measuring the inner sphere’s voltage.
Another problem was that of spontaneous ionization between
the spheres. These problems were overcome by Plimpton and
Lawton [16] by using alternating potentials. They developed a
quasi-static method and charged the outer sphere with a slowly
alternating current. The potential difference between the inner
and outer spheres was detected with a resonant frequency
electrometer. It consisted of an undamped galvanometer with
amplifier, placed within the globes, and with the input resistor
of the amplifier forming a permanent link connecting them,
so as to measure any variable potential difference. No effect
was observed when a harmonically alternating high potential
V (>3000 V), from a condenser generator operating at the
low resonance frequency of the galvanometer, was applied
to the outer globe. The sensitivity was such that a voltage
of 10−6 V was easily observable above the small level of
background noise. With this technique they succeeded in
reducing Maxwell’s limit to ε � 2 × 10−9.

Another of the classic ‘null experiments’ that tests the
exactness of the electrostatic inverse square law was performed
by Bartlett et al [19]. In this experiment, the outer shell of a
spherical capacitor was raised to a potential V with respect to
a distant ground and the potential difference V (r) − V (a) of
equations (7) and (10) induced between the inner and outer
shells was measured. Five concentric spheres were used and a
potential difference of 40 kV at 2500 Hz was imposed between
the two outer spheres. A lock-in detector with a sensitivity
of about 0.2 nV measured the potential difference between the
inner two spheres. Any deviation in Coulomb’s law should lead
to a non-null result for V (r)−V (a) proportional to ε as shown
by equation (7). The result obtained by these authors was
ε � 1 × 10−13. A comparable result was found even when
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the frequency was reduced to 250 Hz and the detector was
synchronized with the charging current rather than with the
charge itself.

The best result obtained so far through developments
of the original Cavendish technique is still that from 1971
by Williams et al [15], who improved an earlier experiment
[20]. They used five concentric metallic shells in the form
of icosahedra rather than spheres in order to reduce the errors
due to charge dispersion. A high voltage and frequency signal
was applied to the external shells and a very sensitive detector
checked for any trace of a signal related to variable charging
of the internal shell. The detector worked by amplifying the
signal of the internal shell and comparing it with an identical
reference signal, progressively out of phase at a rhythm of 360˚
per half hour. Any signal from the detector would indicate a
violation of Coulomb’s Law. In order to avoid introducing
unrelated fields, the reference signal and the detector output
signal were transmitted by means of optical fibres. The outer
shell, of about 1.5 m diameter, was charged 10 kV peak-to-peak
with a 4 MHz sinusoidal voltage. Centred inside this charged
conducting shell is a smaller conducting shell. Any deviation
from Coulomb’s Law is detected by measuring the line integral
of the electric field between these two shells with a detection
sensitivity of about 10−12 V peak-to-peak.

The null result of this experiment expressed in the form of
the photon rest mass squared (equation (14) or equation (10))
is µ2 = 2.3 × 10−19 cm−2. Expressed as a deviation from
Coulomb’s Law in the form of equation (7), their result is
ε = 6 × 10−16, extending the validity of Coulomb’s Law by
two orders of magnitude beyond the findings of Bartlett et al.

5. Limits due to the effects of gravity

We have mentioned above that null experiments that test the
validity of Coulomb’s Law are typically more precise than
those that attempt to directly measure the interaction force
between charges. One of the problems arising when making
direct measurements of the force between two macroscopic
charged bodies, as done when using a torsion balance, is
that the charges are distributed over conducting surfaces of
finite size. In the ideal case, Coulomb’s Law describes the
interaction between two point charges separated by a precisely
known distance. In any practical arrangement, even the
charge on a microscopically small conducting ball cannot be
considered to be truly point-like—as if placed at the centre—
but rather distributed over the ball’s surface. If the charged
ball is interacting with another charged ball, the distribution
on the surface is no longer uniform and has to be determined
using the method of images. Saranin [21] has studied in detail
the departures from Coulomb’s Law that can occur when two
conducting spheres interact electrostatically with each other.
By computing forces on them as a function of their separation,
he found that at small distances a switch from repulsion to
attraction occurs in the general case of arbitrarily but similarly
charged spheres. The only exception—and in it they always
repel each other—is the case in which the charges on the
spheres are related as the squares of their radii. The results of
Saranin help corroborate the idea that, even in principle, null
experiments can be more precise than tests based on the direct

measurement of interaction forces between two macroscopic
charged bodies.

In view of the high levels of precision achieved in several
of these tests, it is interesting to consider what possible
competing effects gravity might introduce into them. The
result f (a, r) in equation (5) was derived strictly from classical
electrodynamics. In it, a uniform charge distribution is
assumed and the effect of gravity is neglected. As noted
by Plimpton and Lawton [16], if electrons have weight
meg the electron density on the conducting sphere must be
asymmetrical, being greater at the bottom where the electrons
are pulled by the force of gravity. For the experiment of
Plimpton and Lawton this effect is insignificant as it leads to a
maximum potential difference over the globe of 10−10 V, which
is far less than the minimum detectable voltage of 10−6 V.

Thus, while such a gravitational effect should be negligible
in the relatively low sensitivity experiment of Plimpton and
Lawton, it could conceivably be important in experimental
tests of higher sensitivity. According to this model, the overall
effect of gravity is to produce a distortion in what should
otherwise be a uniform charge distribution. Of course, the
more general problem is to account for effects of a non-
uniform charge distribution regardless of the origin of the
non-uniformity. In equation (5), the null result comes from
the assumption that Coulomb’s Law is valid and that the
charge is distributed uniformly on the sphere. However,
Shaw [22] objected to the assumption that the charge will
distribute itself uniformly over a conducting spherical shell,
even in the absence of any gravitational effect. In conventional
electrostatics, the uniform charge distribution for Coulomb and
Yukawa potentials follows from the symmetry of the problem
and the uniqueness of the solution. If these potentials are not
valid there is no guarantee of a uniform charge distribution
and thus irregularities in the spherical surface would bias the
concept that the inner potential does not depend on the shape
of the outer sphere. However, considering that any violation
of Coulomb’s Law is very small, departures from the expected
uniformity should give [19] only second-order corrections to
equations (7) and (8).

6. Indirect tests of Coulomb’s Law

In addition to the tests discussed in the previous sections, there
have also been a number of indirect experimental verifications
of Coulomb’s Law, and these will be discussed briefly in what
follows.

6.1. Geomagnetic and astronomical tests

A consequence of Coulomb’s Law is that the magnetic field
produced by a dipole goes as 1/r3 at distances from its
centre for which the dipole approximation is valid. For the
magnetic field of a planet, this distance is equivalent to about
two planetary radii (at least). If the photon rest mass is not
zero—which is equivalent to a violation of Coulomb’s Law—
a Yukawa factor e−r/λC is introduced in the 1/r terms for the
electrostatic and magnetostatic potentials. In this case, the
magnetic field produced by a dipole no longer goes as 1/r3

but contains corrections related to the Compton wavelength
λC = µ−1 = h̄/mγ c where mγ is the photon mass.
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In terms of the Compton wavelength and photon mass,
the sensitive explorations of the validity of Coulomb’s Law
reported by Williams et al [20] yielded an upper limit of
1.05 × 1010 cm for λC and 2 × 10−47 g for mγ , while their
subsequent direct test with concentric icosahedra [15] yielded
the slightly better findings of 1.95 × 1010 cm for λC and
1.6 × 10−47 g for mγ .

The first results obtained from orbital data were those of
Goldhaber and Nieto [14], who used satellite measurements of
the Earth’s magnetic field to set limits of 5.5 × 1010 cm for λC

and 4 × 10−48 g for mγ . This corresponded to an equivalent
value of ε � 1.7 × 10−16. Davis et al [23] verified the 1/r3

behaviour of the magnetic field of Jupiter (much more intense
than that of the Earth) from observations of the Pioneer 10
spacecraft, and were able to improve the precision of the limit
such that λC � 3.14 × 1011, i.e. mγ � 2.8 × 10−11 cm−1 =
8 × 10−49 g.

Further studies on the photon mass and planetary magnetic
fields were carried out by Bicknell [24]. He extended
Schrödinger’s [12] expression for a dipole field to a complete
spherical harmonic analysis of a static planetary field.
Additional components of the magnetic field were identified
which would arise from a non-zero photon mass. However, no
new limits were set on λC because the most important terms
in the expressions for the geomagnetic field were of the same
order as Schrödinger’s apparent external field. An analysis of
Earth’s magnetic field, performed by Fischbach et al [25], led
to an upper limit value of mγ = 1 × 10−48 g.

It is important to note that there is still another way of
characterizing deviations from Coulomb’s Law, based on an
electromagnetic analogue of a fifth force, and that this line
of thought leads to additional suggestions for experimental
tests. The relevant works in this area are those of Bartlett and
Logl [26], Fischbach et al [25], and also Kloor et al [27].

An upper limit for the photon mass was also found
by Lowenthal [28], who used astronomical observations
of the gravitational deflection of electromagnetic radiation.
Although this method does not lead to a better upper limit
than those mentioned above, the method is nevertheless
interesting and, because it is not related to the other techniques,
it constitutes an independent approach to restricting the
magnitude of the photon mass. The question posed by
Lowenthal was the following: if the general theory of relativity
predicts a deflection of starlight by the Sun of 1.75 s of arc, how
is this deflection altered if the photon has a small rest mass µ

(in units of c = h̄ = 1)? Lowenthal showed that the deflection
varies proportionally to µ2 and he set the correction term
equal to the difference between the measured deflection angle
and the calculated deflection angle for photons of zero rest
mass. After taking into account the accuracy of the deflection
measurements, he obtained an upper limit of µ < 7×10−40 g,
which is not as stringent as the other limits, but still a useful
result.

6.2. Lumped-circuit tests and the photon mass

Another indirect method to verify the 1/r2 form of Coulomb’s
Law involves observations of electromagnetic waves of
increasing wavelength, λ. Underlying it is the concept that
if ε is small but �=0, there is a λmax(ε) beyond which there

cannot be electromagnetic wave propagation. With ε �= 0 the
equation for the scalar electromagnetic potential ϕ and vector
potential A takes the form of a Klein–Gordon equation and the
velocity of propagation in vacuo of sinusoidal electromagnetic
waves decreases as the wavelength λ increases, and it vanishes
for a value λmax(ε) that depends on ε. The greater the observed
λmax(ε), the smaller is ε.

A very sensitive test of this concept using an LCR circuit
was carried out by Franken and Ampulski [29] in 1970. These
authors point out that the free-space phase velocity of light
may be expressed as

(vϕ

c

)2
= ω2

ω2 − ω2
c

, (15)

where ω is the angular frequency of the electromagnetic waves
in a resonant cavity and ωc = 2πc/λC. The latter quantity can
be rewritten as h̄ ωc = mc2, which introduces a mass into the
argument. In fact, the lowest resonant frequency of a cavity is
ωc, irrespective of the size of the cavity. The phase velocity
becomes infinite at the critical frequency ωc while the group
velocity approaches zero at this frequency, corresponding to
a massive photon with zero momentum and hence an infinite
uncertainty in position, which, in turn, requires an infinitely
large cavity for confinement. The results of the test [29]
yield the values of 2 × 1012 cm for λC and 1 × 10−49 g for
mγ , corresponding to the equivalent value ε � 4.3 × 10−8.
A difficulty with this test is that so-called ‘warped’ conducting
cavities have been used in order to make up for the requirement
of a very large cavity and there is no rigorous proof that the
theoretical considerations valid for a rectangular box apply also
to warped cavities.

Several authors have discussed possible limitations of the
test by Franken and Ampulski. In one analysis of lumped-
circuit tests of photon mass, Boulware [30] showed that the
only effect of a photon mass, if there is one, is to produce
small changes in the inductance and capacitance of the circuit
as well as changes in its radiative half-life. The behaviour of a
low-frequency, lumped LC circuit is essentially independent
of the dynamics of the electromagnetic fields. Also Park and
Williams [31], and Kroll [32] have noted that in reducing the
size of their apparatus to table-top dimensions the authors have
lowered the sensitivity of their experiment by the same ratio,
thus making it difficult to set significant limits on the photon
rest mass.

In examining the physical significance of the experiment
by Franken and Ampulski, Goldhaber and Nieto [33] show
that in the massive-photon case the fields and currents of the
system are changed only by order (µD)2 from those of the
massless-photon case (D is the dimension of the system). This
implies that the above-mentioned ‘table-top’ experiment is
only weakly sensitive to small Yukawa-like deviations from
Coulomb’s Law and they argue that it is therefore unlikely that
this test can improve present limits on the photon mass.

6.3. Cryogenic experiments

Modern theories that appeal to the concept of spontaneous
symmetry breaking assume that particles, which are massless
above a certain critical temperature Tc, acquire mass below
this temperature. Within this framework it is natural to
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Figure 3. Schematic diagram of the cryogenic photon-mass experiment of Ryan et al. The system measures the current that flows between
two closed surfaces in response to an impressed voltage difference. The apparatus is kept at very low temperature (1.36 K). (Figure 1 from
Ryan et al [34]. Copyright (1985) by the American Physical Society (with permission of Prof. Austin).)

speculate that the photon could also be massless above a critical
temperature and acquire a rest mass below it.

A cryogenic photon-mass experiment was performed by
Ryan et al [34]. As shown diagrammatically in figure 3,
it consisted essentially of a null experiment with concentric
containers (closed surfaces), similar in a way to the previous
direct tests of Coulomb’s Law such as the one by Williams
et al [15]. Unlike a standard Coulomb’s Law experiment, this
method measured the current that flows between two closed
surfaces in response to an impressed voltage difference, not the
voltage difference itself. The apparatus was immersed in liquid
helium. The result of the experiment set a limit on the mass
of the photon of mγ � (1.5 ± 1.38) × 10−42 g at 1.36 K. The
sensitivity is lower than that of other previous tests. However,
the result is still important because the thermodynamic validity
of Coulomb’s Law is now extended from the standard terrestrial
(‘room’) temperatures to those typical of a planet far away from
the Sun, or to those of the galactic environment.

6.4. The Aharonov–Bohm effects and the mass of the photon

As discussed in the literature, several conjectures related
to the Aharonov–Bohm effect [35] have been developed
assuming electromagnetic interaction of fields of infinite range,
i.e. zero photon mass. The possibility that any associated
effects, specifically the Aharonov–Bohm effect itself, might
be manifest within the context of finite-range electrodynamics
has been discussed by Boulware and Deser [36].

These authors consider the coupling of the photon mass
mγ , as predicted by the Proca equation in the form

∂νF
µν + m2

γ Aµ = Jµ (16)

and show that the component of the magnetic field for a
solenoid of the type that might be used in a test of the
Aharonov–Bohm effect is

B = B0 + m2
γ 
(ρ), (17)

where the first term, B0, is the standard magnetic field for
zero photon mass—the field confined inside a long solenoid
of radius a and carrying the current j—and the second term

represents a correction due to the photon non-vanishing rest
mass mγ . The quantity 
(ρ), which can be expressed in terms
of the Bessel functions I0 and K0 that are regular at the origin
and infinity respectively, reads


(ρ) = jθ(a − ρ)

[
K0(mγ ρ)

∫ ρ

0
ρ ′ dρ ′ I0(mγ ρ ′)

+ I0(mγ ρ)

∫ a

ρ

ρ ′ dρ ′ K0(mγ ρ ′)

]

− jθ(ρ − a)K0(mγ ρ)

∫ a

0
ρ ′ dρ ′ I0(mγ ρ ′). (18)

Thus, for the standard solenoid configuration, finite range
would lead to a small B field leakage outside the solenoid
represented by m2

γ 
(ρ). In principle, one could arrange for
the leakage flux addition to be an integer, in which case only
the interior field would contribute, making the scenario just as
non-local as in the standard massless case.

Because of the extra mass-dependent term, some non-
trivial limits on the range of the transverse photon might thus
be obtained from a table-top experiment. By comparing the
theoretical corrections to the flux through a small circular
region of radius ρ with the flux for the massless case,
Boulware and Deser were able to estimate the size of a possible
experimental limit on the range m−1

γ . For scale sizes of
ρ ∼ 10 cm, the observable ranges are m−1

γ � 102 km.
It would also be interesting to consider the other non-local

effects of the Aharonov–Bohm type, such as those associated
with neutral particles that have an intrinsic magnetic or electric
dipole moment [37]. The goal would be to see if they provide
similar correction terms that might be suitable for setting
more precise limits on the range of m−1

γ . In the case of
the standard Aharonov–Casher effect, this analysis has been
performed by Fuchs [38] who points out that, unlike the
case for the Aharonov–Bohm effect, a neutral particle with
a magnetic dipole moment that couples to non-gauge fields
has no classical acceleration regardless of the photon mass, so
that no observable corrections would be expected.

However, this may not be the case for a neutral particle
with an electric dipole moment. In fact, in the Aharonov–
Casher effect a particle with magnetic dipole µm acquires an
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electromagnetic momentum c−1E × µm because µm couples
with the electric field E, while a particle with an electric
dipole de couples with the vector potential A [37]—as happens
in the case of the Aharonov–Bohm effect—thus acquiring
an electromagnetic momentum c−1(de · ∇)A. For field-free
effects [37] on electric dipoles, a magnetic sheet is the source
of A. Small leakages of the field—confined within the sheet in
the massless photon case—may lead to observable corrections
of the type predicted by Boulware and Deser, thus presenting
an interesting possibility for future study.

6.5. Recent limits on the photon mass and the cosmic
magnetic vector potential

A novel experimental approach for measuring the photon
mass m has been based on a toroidal Cavendish balance
used to evaluate the product µ2A of the photon mass squared
(µ−1 = h̄/mγ c) and the ambient cosmic vector potential A.
This approach, developed by Lakes [39], points out that the
Maxwell–Proca equations modify the standard equations for
the curl of B to

∇ × B = 4π

c
j +

1

c

∂ E
∂ t

− µ2A. (19)

Gauge invariance is lost if µ �= 0, since in these equations the
potentials themselves have physical significance, in addition
to that of the usual fields. If a toroid carries an electric current,
or if it is permanently magnetized with a field B confined
within it, the corresponding magnetic vector potential may
be represented by a dipole field ad. If µ �= 0, this dipole
field interacts with the ambient vector potential A to produce
a torque τ = ad × Aµ2 via the energy density of the vector
potential. Thus, the method is based on the energy density of
A in the presence of mγ , not on measurement of the magnetic
field.

The experiment does not yield a direct limit for µ, but
rather on Aµ2. The modified Cavendish balance used to
determine the product Aµ2 consisted of a toroid of electrical
steel wound with many turns of wire that carried a current (see
figure 4). The apparatus was supported by water flotation [40].
The experiment yielded Aµ2 < 2 × 10−9 T m m−2 and, if
the ambient magnetic vector potential is A ≈ 1012 T m due
to cluster level fields, µ−1 > 2 × 1010 m. Even with more
conservative values for A, the limit set by this experiment
improves the precision attained with the Jovian magnetic field.

In the preceding section on lumped circuits we quoted the
result of Goldhaber and Nieto [33], which suggests that for
table-top experiments the sensitivity of any limit on µ2 goes
as 1/D2 where D is the dimension of the system. This line
of reasoning has become an often-used ‘rule of thumb’ in the
field, and the inference of it is that table-top experiments will
be less sensitive than others. If so, it is then interesting to
consider why the experiment of Lakes [39] sets such a good
limit. We believe that the difference is due mainly to the fact
that in table-top tests such as those using lumped circuits, the
modification of the vector potential A due to a massive photon
possesses a range that is logically limited to the dimensions
of the circuit or cavity where the electromagnetic waves are
produced and confined. However, in the Lakes experiment,
the mass µ couples with a vector potential A that is of cosmic
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Figure 4. Block diagram of the sophisticated Cavendish balance
used by Lakes to evaluate the product of the photon mass squared
and the ambient cosmic vector potential. The toroid carries an
electric current giving rise to a dipole field ad that, if mγ �= 0,
interacts with the ambient vector potential Aambient to produce a
torque τ on the toroid. (Figure 1 from Lakes [39]. Copyright (1998)
by the American Physical Society (with permission of Prof. Lakes).)

origin so that the dimensions of the sources of A correspond
to astronomical or galactic distances as opposed to those of
laboratory size. Thus, experiments of that type are able to
sidestep the implications of the argument of Goldhaber and
Nieto [33].

The experimental arrangement used by Lakes is such that
the torque on the torsion balance will vary with the rotation
of the Earth, making it possible to experimentally detect the
variations. However, if the cosmic ambient vector potential
were to be fortuitously aligned with the Earth’s rotation axis,
then this approach would fail. In order to avoid this possibility,
Luo et al [41] performed an improved experiment by rotating
the torsion balance to ensure the effectiveness of detection for
all possible orientations of the vector potential. They were
also able to remove the influences of sidereal disturbances in
the environment by virtue of this method of modulation. The
experimental result was Aµ2 < 1.1 × 10−11 T m m−2. If the
ambient cosmic magnetic vector potential is A ≈ 1012 T m, it
yields the new upper limit µ−1 > 1.66×1011 m and the photon
mass is mγ < 1.2 × 10−51 g.

Those latest results are certainly remarkable if one
considers that, according to the uncertainty principle, a
purely theoretical estimate of the photon mass is given by
mγ = h̄/(�t)c2, which yields an order of magnitude number
of 10−66 g, where the age of the universe is taken to be
roughly 1010 years. Table 1 summarizes the results of the
various experiments conducted since the time of Cavendish,
and figure 5 presents a graphical comparison of the related
precisions.

In table 1, direct (d) and indirect (i) tests of Coulomb’s
Law are listed. The experiments performed up to 1971 directly
measured the parameter ε that indicates the degree of precision
of Coulomb’s Law written in the form 1/r2+ε; most of the
successive experiments are instead tests of the photon rest
mass mγ (µ−1 = h̄/mγ c) and determine its upper limit.
For these latter experiments, the corresponding ‘precision’
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Table 1. Coulomb’s Law and photon mass experiments.

Author Date ε µ/cm−1 mγ /g �
Cavendish 1773 d 3 × 10−2 1 × 10−2 2.8 × 10−40

Coulomb 1779 d 1 × 10−2 1 × 10−1 2.8 × 10−39

Robison 1801 d 6 × 10−2 6 × 10−2 2.8 × 10−40

Maxwell 1892 d 5 × 10−5 1 × 10−3 2.8 × 10−41

Plimpton and Lawton 1936 d 2 × 10−9 1 × 10−6 2.8 × 10−44

Cochran and Franken 1968 d 9 × 10−12 9 × 10−8 2.6 × 10−45

Bartlett et al 1970 d 1 × 10−13 1 × 10−8 2.8 × 10−46

Williams et al 1971 d 6 × 10−16 5 × 10−10 1.4 × 10−47

Goldhaber and Nieto 1968 i 1.7 × 10−16 1.4 × 10−10 4.0 × 10−48

Franken and Ampulski 1971 i 4.3 × 10−18 3.6 × 10−12 1.0 × 10−49

Lowenthal 1973 i 3.0 × 10−08 2.5 × 10−2 7.0 × 10−40

Davis et al 1975 i 3.4 × 10−17 2.8 × 10−11 8.0 × 10−49

Crandall 1983 d 3.4 × 10−16 2.8 × 10−10 8.0 × 10−48

Ryan et al 1985 i 6.4 × 10−11 5.3 × 10−5 1.5 × 10−42

Boulware and Deser 1989 i 1.2 × 10−13 1 × 10−7 2.8 × 10−45

Chernikov et al 1992 i 3.6 × 10−14 3 × 10−8 8.4 × 10−46

Fischbach et al 1994 i 4.3 × 10−17 3.5 × 10−11 1.0 × 10−48

Lakes 1998 i 6.8 × 10−19 5.7 × 10−13 1.6 × 10−50

Schaefer 1999 i 1.8 × 10−12 1.5 × 10−6 4.2 × 10−44

Lou et al 2002 i 5.1 × 10−20 4.3 × 10−14 1.2 × 10−45
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Figure 5. Graph showing the increasing ‘precision’ ε by which Coulomb’s Law in the form 1/r2+ε has been verified since the 1700s. The
law would be verified exactly when ε = 0. Although some of the recent experiments are relatively imprecise, they are nevertheless
important because they extend the validity of Coulomb’s Law as a function of the physical conditions of the measurement.

ε is here evaluated indirectly as if, instead of a photon test
mass, equivalent experiments of the type by Williams et al,
maintaining the same proportion between ε and µ, were
performed.

7. Coulomb’s Law and units of measurement

The various tests discussed above have confirmed the validity
of Coulomb’s Law to a high degree of precision. We may write
it vectorially as

F = kq1q2
r̂21

| r2 − r1 |2 , (20)

where r1 and r2 are the position vectors of the charges q1 and
q2, respectively. We are left with the task of determining the
proportionality constant k, the value of which is strictly related

to the system of units chosen. Although arbitrary, in general,
the choice has usually been made in such a way as to obtain
unitary and dimensionless constants.

Three systems of units have historically been used the
most. The first two have been superseded by the third:

(1) The non-rationalized Gaussian system, which coincides
with the old cgs electrostatic system.

(2) The rationalized Gaussian system.
(3) The presently accepted International System (SI ).

In case (1), the constant k is dimensionless and unitary, i.e.
k = 1. From the expression of the force F above, we can
immediately establish the physical dimensions of the electric
charge [q] in terms of mechanical dimension such that

[q] = [r]
√

[F ], (21)

Metrologia, 41 (2004) S159–S170 S167



G Spavieri et al

that is, the charge has the dimensions of length times the square
root of a force. The corresponding unit was called the Franklin
(or simply u.e.s) and was such that a force of 1 dyne would
act between two unit charges separated by a distance of 1 cm
(1 Franklin = 1 u.e.s = 1 cm3/2 g1/2 s−1).

In the rationalized Gaussian system, k was also
dimensionless and had a numerical value of k = 1/4π . The
added complexity of incorporating a numerical constant into
the statement of Coulomb’s Law is amply compensated by the
disappearance of the 4π in the integral relations (as in Gauss’
Law). In this system, the unit of the electric charge was derived
using arguments similar to those of the first case, but the unit
was seldom used.

The accepted standard, of course, is the International
System or SI, within which the unit of electric charge is the
coulomb [C]. The constant k now takes the value (4πε0)

−1

where ε0, which has the defined value ε0 = 8.854.... ×
10−12 F m−1, is the ‘electric constant’, i.e. the permittivity of
free space or the dielectric constant in vacuo. In this case,
k is neither a pure number nor a dimensionless ratio, instead
having the dimensions of [ε0]−1.

In spite of the ubiquity of the SI, use of the Gaussian
system persists among many theoretical physicists because
it offers a convenient form of k and velocities appear in
dimensionless form (instead of v the quotient v/c is used,
where c is the speed of light in vacuo). Of course, the SI is
used uniquely for any measurements and all modern electrical
instruments and devices are calibrated accordingly.

8. Modern interpretations and conclusions

In considering the various tests of Coulomb’s Law, or in
applications of it to diverse physical phenomena, it is important
to remember that this fundamental tenet of electrostatics is an
idealization. Therefore, care must be taken when applying it
and when exploring its limitations, as pointed out by Saranin
[21]. Even so, it finds use in all fields of science. For example,
it is employed in meteorology to test models of thunderstorm
charge distributions, as done by Stolzenburg and Marshall [42].
They considered the charge distribution in a stratiform region
of a mesoscale convective system and determined that the
general vertical charge structure of that region is horizontally
extensive over at least 100 km. Charge distributions were
modelled in a three-dimensional domain using an approach that
correctly calculates the electric field due to all the point charges
and their corresponding images on the basis of Coulomb’s
Law. Atmospheric physics, planetary physics, astrophysics,
and plasma physics are vast domains of application for efforts
of this type, and this hints at the range of scales over which it
is routinely applied.

Coulomb’s torsion balance was in essence the first
precision mechanical detector of charge, i.e. the first high-
precision electrometer. The modern analogues of such
instruments are semiconductor-based field-effect devices, the
most sensitive of which are cryogenically cooled transistors
that function at the single-electrons level [43, 44]. Also,
recently, a working nanometre-scale mechanical electrometer
was constructed by Cleland and Roukes [45], who state that,
in principle, devices such as theirs should ultimately reach

sensitivities comparable with charge detection capabilities of
the cryogenic single-electron transistors.

Coulomb’s Law is also at the heart of pedagogical
physics. It is measured and tested by students in laboratory
classes virtually every day. There are several types of
precision apparatus that are commercially available for student
experiments on Coulomb’s Law. In fact, a Coulomb null
experiment that enables physics students to obtain rigorous
upper bounds on the photon mass using an apparatus that
operates with subnanovolt signals has been devised by
Crandall [46]. It is inexpensive to assemble and use, and the
experimental arrangement can be adapted for use at several
college levels. Of course, interest in the pedagogic aspects of
Coulomb’s Law goes well beyond the obvious applications
of it to electrostatics. By introducing the superposition
principle and the theory of special relativity, students are taught
how generalizations of Coulomb’s Law lead to Maxwell’s
equations [47].

In this review, we have presented a description of the
ongoing development of empirical studies of the forces
between charges, beginning with the very early work by
people like Cavendish and others that established the nature
of the inverse square law, and then proceeding to the modern
experiments that search for deviations from exactness of the
inverse square law. Both Newton’s Law of gravity and
Coulomb’s Law possess the same spatial dependence, 1/r2,
and it is fair to say that these statements of the inverse square
law have served as critical markers in guiding much of the
development of theoretical physics, in parallel with the long
history of improvement of the experimental situation. With
the development of modern physics, Newton’s Law is now
understood to be the weak-field limit of Einstein’s general
relativity, while Coulomb’s Law, as one statement of the
electromagnetic interaction, has been absorbed into the unified
theory of electro-weak interactions.

However, according to general relativity, matter
introduces curvature into space–time and this is what
modifies the law of gravitation as originally formulated by
Newton. The result is that the theory is nonlinear in the
sense that the principle of superposition of effects is not
valid. On the contrary, Coulomb’s Law is not altered in the
description of physical phenomena provided by modern unified
theories. In the unified theory, the interaction (attraction
or repulsion) between charges is no longer described in
terms of forces but rather in terms of an exchange of virtual
particles (photons) that yields the same effect as the classical
electrostatic force. If the photon mass is zero, Coulomb’s Law
remains a fundamental law of electrodynamics, where linearity
and the principle of superposition of effects are valid. That is,
generally speaking, even unified field theories would predict,
for the observable interaction between stationary charges, the
same result predicted by Coulomb’s Law, always supposing
that the photon mass is zero. All this can introduce the thought
that Coulomb’s Law is thus more fundamental than Newton’s
Law and that electromagnetic interactions are a more primary
kind of fundamental interaction at the basis of any attempt of
unification of the forces and interactions of nature.

Finally, in discussing the physical implications of
Coulomb’s Law, it is tempting to consider the remarkably high
degree of precision with which the inverse square law holds,
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and thus speculate that its mathematical simplicity may be at
the basis of the successful incorporation of the electromagnetic
interactions into unified theories. The precisions achieved by
the experimental tests are increasingly exact. In recent times
they go from the value of ε = (2.7 ± 3.1) × 10−16 from the
direct test of Williams et al [15] to the more recent limit on the
photon mass of mγ < 1.2 × 10−51 g from the indirect test of
Luo et al [41].

This glimpse at several implications of Coulomb’s Law
reconfirms its importance and centrality in several areas of
physics. Some far-reaching implications of the non-validity of
Coulomb’s Law or, equivalently, the existence of a non-zero
photon mass, include the wavelength dependence of the speed
of light in free space [48], possible variability in the speed of
light [49], deviations from exactness in Ampère Law [50], the
existence of longitudinal electromagnetic waves [51], and an
additional Yukawa potential [25, 23] in magnetic dipole fields,
as discussed earlier. The mass of the photon has been under
scrutiny since the early days of quantum mechanics. However,
the stringent limits imposed by the experiments discussed
earlier seem to exclude the existence of a non-zero mass at
least in the normal conditions of the universe as we know
it. Nevertheless, in cosmological inflation scenarios where
electrodynamics and gravitation are present in a unified way,
the dynamical generation of a photon mass could be more
likely. In this context, the cosmologists Prokopec et al [52]
point out some far-reaching implications of the non-validity
of Coulomb’s Law. In describing the early stage of the
universe, they find that quantum electrodynamics and curved
space may do the trick: in a locally de Sitter inflationary
space–time and in the presence of a light, minimally coupled,
charged scalar field, the polarization of the vacuum induces a
photon mass that may result in the generation of intragalactic
magnetic fields responsible for seeding the galactic dynamo
mechanism [53]. Apart from indirect tests of potentially
observable effects of a dynamically generated photon mass
in inflation, a direct test would have been possible only in
the extreme conditions of the early universe described by
cosmological inflation scenarios, hence it is unfortunately
difficult to see how this far-reaching implication of the non-
validity of Coulomb’s Law might be examined. Finally,
stepping away from electrodynamics, quantum mechanics,
and cosmology, and entering the arena of thermodynamics,
still other studies suggest that a non-zero photon mass would
impact our understanding of blackbody radiation and other
fundamental aspects of thermodynamics [54].

Regarding the limits of validity of Coulomb’s Law,
particularly as a function of distance r , the Jovian
measurements show that it holds at least up to distances of
the order of r ≈ 106 km. From the microscopic point of view,
the inferior limits found from scattering experiments show that
it holds down at the atomic (r � 10−8 cm) and nuclear scales
(r � 10−13 cm), and of course the cryogenic test extends its
validity to very low temperatures. Coulomb’s Law provides
a useful and exciting window on fundamental physics and it
opens experimental doors to a number of diverse fields of study.
With continued imagination and through careful laboratory
technique, it promises to be a stimulating tool for still more
far-reaching tests of the limits of our knowledge of the physical
world.
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