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Abstract
Coulomb’s Law is a fundamental principle describing the electric force
between isolated charges, and represents the first quantitative law achieved
in electromagnetism. The degree of confidence with which the law is
experimentally known to hold was investigated after the law was put forth
by Coulomb in 1785. The electrodynamics for massive particles suggests
that a photon with a finite rest mass will cause a deviation from the inverse
square law. So, modern interpretations of the possible deviation from
Coulomb’s inverse square law are usually associated with the non-zero
photon mass. In this article, we first give a historical review of the
foundation of Coulomb’s inverse square law. Then, the experimental
searches for validity of Coulomb’s Law, particularly in its inverse square
nature, are generally introduced. Based on Proca’s equations, the unique
simplest relativistic generalization of Maxwell’s equations, the link between
the deviation from Coulomb’s Law and the upper limit on the photon rest
mass based on the concentric-spheres apparatus established in the classical
experiment of Cavendish is reviewed. Up to now, all the experiments show
no evidence for a positive value, and the experimental result was
customarily expressed as an upper limit on the deviation or on the photon
rest mass. As a representative method with the double mission of testing of
the validity of Coulomb’s Law and of the photon rest mass, possible
improvements for this kind of experiment are discussed.

1. Introduction

The famous inverse square law in electrostatics, first published
in 1785 by Charles Augustin de Coulomb, is known as the
fundamental law of electrostatics. As the first quantitative
law in the history of electricity, Coulomb’s inverse square
law has played a crucial role and made great contributions
to the development of electricity and magnetism, and other
related fields. Coulomb’s Law, along with the principle
of superposition, gives Gauss’s Law and the conservative
nature of the electric field, which may be generalized using
the Lorentz transformation to obtain Maxwell’s equations.
Even then, the validity of Coulomb’s Law has been tested
continuously over the past centuries. Based on the classical
ingenious scheme devised by Henry Cavendish [1, 2], modern
experiments usually yield not only the result of possible

deviation from Coulomb’s inverse square law, but that of the
upper limit on the photon rest mass [3–7].

The photon, as the fundamental particle of electro-
magnetic interaction, is generally assumed to be massless.
This hypothesis is based on the fact that a photon cannot stand
still for ever. However, a nonzero photon mass could be so
small that present-day experiments cannot probe it. Taking
into account the uncertainty principle, the photon mass could
be estimated using mγ ≈ �/(�t)c2 to have a magnitude of
about 10−66 g while the age of the universe is about 1010 years,
which gives the ultimate limit for meaningful experimental
measurements of the photon mass. Up to now, there is no
positive result for the photon rest mass or the deviation from
Coulomb’s inverse square law. The experimental results just
serve to set an upper bound to the photon mass and the deviation
from the exponent 2 in the inverse square law. The aim of this
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Figure 1. Cavendish’s apparatus for establishing the inverse square law of electrostatics. The inner globe of 12.1 inch (307 mm) diameter
was fixed on an insulated supporting post. The hollow pasteboard hemispheres, slightly larger than the globe, were mounted on timber
shelves with two glass bars, respectively. The shelves were fixed with hinges so as to close the hemispheres easily. When the timber shelves
were closed together, the globe and the hemispheres formed insulated concentric spheres. Both the globe and hemispheres were covered
with tinfoil to make them better conductors of electricity.

paper is to give a review of the main ideas and results of the
investigations intended to test Coulomb’s Law and pertinently
to improve the upper limit on the photon rest mass.

2. Foundation of Coulomb’s Law

Early studies of electrical and magnetic phenomena began from
quantitative studies of the law of the force between electric
charges, which is now known as Coulomb’s Law. An excellent
historical development of Coulomb’s inverse square law can
be found in [8].

2.1. Robison’s experiment

The first experimental determination of Coulomb’s inverse
square law was made in 1769 by John Robison [8]. The scheme
is very simple. He used gravity to balance the repulsive force
between two electrically charged spheres fixed on a rotating
rod, and then determined the values of the electrical force from
the known weight of the rod at different distances. Robison
analysed his results as a possible deviation from the inverse
square law, assuming that the exponent applied to distance
was not exactly 2 but 2 + q. He finally obtained a value for
q of 0.06. Robison attributed this value to experimental error
and disclosed that the magnitude of the electric force between
two charges was inversely proportional to the square of the
distance between them. Unfortunately, Robison did not report
his experimental results in a timely manner. A reasonable
interpretation of Robison’s experiment was not given until the
20th century, which implied a limit on the photon mass of about
4 × 10−40 g.

2.2. Concentric metal spheres experiments

In 1773, Henry Cavendish [1] employed concentric spheres
to search for the relation between charges indirectly. The
experimental apparatus is shown in figure 1. The experiment
was performed as follows: first, the globe was connected to
one of the closed hemispheres with a conducting wire. Then,
the outer sphere was electrically charged for a while, and the
connecting wire was broken by a silk thread. Finally, the outer
sphere was opened and removed to discharge absolutely. A
pith-ball electrometer was used to detect the electric charge on
the inner globe. The experiment showed that the pith balls of
the electrometer did not separate, which indicated the absence
of charge on the inner globe.

To explain the result more elaborately Cavendish
suggested the following simple model. Supposing that there
was an electrically charged spherical shell with a uniform
surface charge density σ , and considering a unit point charge P

placed inside the shell, the force acting on the point charge P

included two parts: one was from the charges on the area
dS1 which held a solid angle d�1 towards the point charge P ,
while the other was from dS2 of solid angle d�2 as presented
in figure 2. The net force on the unit point charge P would be

σdS2

r2
2

r0 − σdS1

r2
1

r0. (2.1)

Considering the relation between the area and the corres-
ponding solid angle, it is easy to obtain

σdS2

r2
2

r0 − σdS1

r2
1

r0 = σ(d�2 − d�1) = 0. (2.2)

This indicated that the net force on the inside charge was
exactly zero if the electric force obeyed the inverse square
law. In other words, a uniformly distributed charge on the
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Figure 2. The electrical force was inversely proportional to the
square of the distance. The electrically charged metal spherical shell
was divided into two parts by the plane AB. A point charge P was
placed inside the shell, which experienced force from the charge on
the surface of the shell. Although the upper part ACB was smaller
than the bottom one ADB, the net force acting on the charge P
would be exactly zero if the electric force obeyed the inverse
square law.

outer surface of the metal sphere was the necessary conclusion
of the inverse square law. If there was any deviation from
the inverse square law, charges would migrate through the
connecting wire to the inner globe in Cavendish’s experiment.
Similarly, Cavendish ascribed the experimental error to a
possible breakdown of the inverse square law and concluded
that the deviation q from 2 cannot exceed 0.02. A modern
interpretation of Cavendish’s result gave an upper limit on the
photon rest mass that was about 1 × 10−40 g. Those results
were improved in 1873 by Maxwell [2], with the deviation
q of less than 5 × 10−5 and the bound on the photon mass
about 5×10−42 g. The main improvements were that the outer
sphere was earthed instead of being removed, which provided
a shield from outer disturbances at the cost of determining the
potential of the inner shell with more difficulty. The researches
of both Robison and Cavendish were not published until the late
nineteenth century, when Maxwell mentioned this heuristic
experiment in [2].

2.3. Coulomb’s experiments

Although numerous workers have investigated the law of the
force between charges before Coulomb, and with even higher
precision, it was Coulomb who first announced the inverse
square law in 1785. The noteworthy point being emphasized is
that the experiments performed by Coulomb were independent
of other experiments. Coulomb’s experiments were divided
into three parts: first, using a torsion balance Coulomb
demonstrated directly that two like charges repel each other
with a force that varies inversely as the square of the distance
between them; second, the law of the attractive force between
unlike charges was indirectly detected by an electrical torsion
balance, which was inspired by the inverse square law of

gravitation; third was the relation between the force and the
products of two charges. Using this, Coulomb presented the
famous law of electricity which has come to be known as
Coulomb’s Law. The expression for the electrostatic force
from charge 1 to charge 2 was

F12 = −F21 = 1

4πε0

q1q2r12

|r12|3
. (2.3)

In recognition of Coulomb’s work, the SI unit of charge is
called the coulomb (C).

3. The photon rest mass and related experiments

3.1. General introduction

The great triumphs of Maxwellian electromagnetism and
quantum electrodynamics were based on the hypothesis that
the photon should be a particle with zero rest mass. The
photon could carry energy and momentum from place to place
and light rays would propagate in vacuum with a constant
velocity c being independent of inertial frames, which was
the second postulate in Einstein’s theory of special relativity.
As a result, the velocity of a particle with finite mass would
never reach the constant c. The fact that light could not stand
still made the assumption reasonable and it was difficult to find
any counter-examples in theory. Still, experimental efforts to
improve the limits on the rest mass of the photon—in other
words, to challenge the accepted theories of the time—have
continued since the time of Cavendish or earlier, even before
the concept of the photon was introduced.

A finite photon mass may be accommodated in a unique
way by changing the inhomogeneous Maxwell equations to
the Proca equations, the theoretical expressions of possible
nonzero photon rest mass introduced by Proca [9] and de
Broglie [10]. In the presence of sources ρ and J, these
equations may be written as (SI units)

∇ · E = ρ

ε0
− µ2

γ φ, (3.1)

∇ × E = −∂B
∂t

, (3.2)

∇ · B = 0, (3.3)

∇ × B = µ0J + µ0ε0
∂E
∂t

− µ2
γ A, (3.4)

together with the field strengths E = −∇φ−∂A/∂t , B = ∇×A
and the Lorentz condition

∇ · A +
1

c2

∂φ

∂t
= 0, (3.5)

where φ and A are the scalar and the vector potentials, which
uniquely determine the field, and µ−1

γ = �/(mγ c) is a
characteristic length, with mγ as the photon mass. If mγ = 0,
the Proca equations would reduce to Maxwell’s equations. The
Proca equations, the relativistically invariant modification of
Maxwell’s equations, provide a complete and self-consistent
description of electromagnetic phenomena [7].

In four-dimensional space the Proca equations can be
rewritten as

(��2 − µ2
γ )Aµ = −µ0Jµ, (3.6)
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Table 1. Several important limits on the photon rest mass mγ .

Author (date) Ref. Experimental scheme Upper limit on mγ /g

Terrestrial results
Goldhaber et al (1971) [4] Speed of light 5.6 × 10−42

Williams et al (1971) [13] Test of Coulomb’s law 1.6 × 10−47

Chernikov et al (1992) [14] Test of Ampere’s law 8.4 × 10−46

Lakes (1998) [15] Static torsion balance 2 × 10−50

Luo et al (2003) [16] Dynamic torsion balance 1.2 × 10−51

Extraterrestrial results
de Broglie (1940) [10] Dispersion of starlight 0.8 × 10−39

Feinberg (1969) [17] Dispersion of starlight 10−44

Schaefer (1999) [18] Dispersion of gamma ray bursts 4.2 × 10−44

Davis et al (1975) [19] Analysis of Jupiter’s magnetic field 8 × 10−49

Fischbach et al (1994) [20] Analysis of Earth’s magnetic field 1.0 × 10−48

Ryutov (1997) [21] Solar wind magnetic field and plasma 10−49

Gintsburg (1964) [22] Altitude dependence of geomagnetic field 3 × 10−48

Patel (1965) [23] Alfvén waves in Earth’s magnetosphere 4 × 10−47

Hollweg (1974) [24] Alfvén waves in interplanetary medium 1.3 × 10−48

Barnes et al (1975) [25] Hydromagnetic waves 3 × 10−50

DeBernadis et al (1984) [26] Cosmic background radiation 3 × 10−51

Williams et al (1971) [27] Galactic magnetic field 3 × 10−56

Chibisov (1976) [5] Stability of the galaxies 3 × 10−60

where Aµ and Jµ are the 4-vector of potential (A, iφ/c)

and current density (J, icρ), respectively. The d’Alembertian
symbol ��2 is equal to ∇2 −∂2/∂(ct)2. In free space, the above
equation reduces to

(��2 − µ2
γ )Aµ = 0, (3.7)

which is essentially the Klein–Gordon equation for the photon.
The characteristic length scale µ−1

γ , namely the reduced
Compton wavelength of the photon, is an effective range
in which the electromagnetic interaction would exhibit an
exponential damping by exp(−µ−1

γ r).

3.2. Effect of massive photon on the static electric field

Once the photon is provided with a finite mass, three immediate
consequences may be deduced from the Proca equations: the
frequency dependence of the velocity of light propagating
in free space; the third state of the polarization direction,
namely the ‘longitudinal photon’; and some modifications
in the characteristics of classical static fields. All those
effects are useful approaches for laboratory experiments and
cosmological observations to determine the upper bound on
the photon mass.

What is of interest in this paper is the effect of a massive
photon in a static electric field. In the case of a massive photon,
the wave equation will be modified for all potentials (including
the Coulomb potential) in the form(

∇2 − 1

c2

∂2

∂t2
− µ2

γ

)
φ = − ρ

ε0
. (3.8)

For a point charge and in the static case, this yields a Yukawa
type potential,

φ(r) = 1

4πε0

Q

r
exp(−µγ r), (3.9)

and the electric field

E(r) = Q

4πε0

(
1

r2
+

µγ

r

)
exp(−µγ r). (3.10)

Inspection of equations (3.8)–(3.10) shows that if r � µ−1
γ ,

then the inverse square law of forces is a good approximation,
but if r � µ−1

γ , then the force law departs from the prediction
of Maxwell’s equations. Up to now, finding the exponential
deviation from Coulomb’s Law provides the most reliable test
for the photon rest mass in terrestrial experiments, in that those
laboratory tests have the advantage of free variation of the
experimental parameters [7]. As for large scale observations,
the limits usually come from the analyses of astronomical
data of the cosmological magnetic field. However, those
results are essentially order-of-magnitude arguments due to
the incomplete knowledge about the structure of the large-
scale magnetic field [11, 12]. In section 4 we will review those
laboratory experiments in detail.

3.3. Methods and related results

Experiments for determining an upper limit on the photon rest
mass can be categorized, and the results of some important
experiments are listed in table 1. All those null results gave the
experimental evidence that the static large-scale field coincided
with the Maxwellian field. Up to now, no experiment has
proved the photon rest mass to be nonzero. However, an
experiment that fails to find a finite photon mass does not
prove definitely that the mass is zero. The limits on the photon
mass have approached ever more closely the ultimate limit
determined by the uncertainty principle. So, nobody can assert
that the next experiment will not reveal evidence of a definite,
nonzero mass.

4. Laboratory tests of Coulomb’s inverse square law

4.1. General method and technical background

From the time of Cavendish or earlier, Coulomb’s inverse
square law has been tested directly or indirectly. Experiments
with higher precision and involving different dimensions have
been performed over the years. It is now customary to quote
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tests of the inverse square law in one of the following two
ways [28]:

(a) Assume that the force varies with the distance r between
two point charges according to the phenomenological
formula 1/r2+q and quote a value or limit for q, which
represents departure from the Coulomb inverse square law.

(b) Assume that the electrostatic potential has the ‘Yukawa’
form e−µγr/r instead of the Coulomb form 1/r and quote
a value or limit for µγ or µ−1

γ . Since µγ = mγ c/�, the test
of the inverse square law is sometimes expressed in terms
of an upper limit on the photon rest mass. Geomagnetic
and extraterrestrial experiments give µγ or mγ , while
laboratory experiments usually give q and perhaps µγ

or mγ .

The experimental study of the photon rest mass, or
equivalently the deviation from Coulomb’s inverse square law
to a certain extent, is difficult because, for an experiment
confined in dimension D, the effect of finite µγ is of the order
of (µγ D)2, a theorem proposed in 1971 by Goldhaber and
Nieto [4]. This means that an experiment designed to find the
effects of a massive photon or a breakdown of Coulomb’s Law
must either interrogate a region of size comparable to µ−1

γ or
manage extraordinary precision in detecting the infinitesimal
evidence of a massive photon or the deviation. The concentric
sphere experiments, proposed by Cavendish, are typical of
the apparatus used by successive people while the primary
improvement comes from technological developments that
allow detection of weak signals with enormous sensitivity.
The principal advantage of this method is that all the
parameters involved can be individually varied and tested,
whereas astronomical observations usually involve a number
of factors that are subject to interpretations due to various
assumptions that are difficult to verify.

4.2. Static experiments

The original concentric spheres experiment performed by
Cavendish in 1773 gave an upper limit on q of |q| � 0.02,
and this result was improved to |q| � 5 × 10−5 in 1873 by
Maxwell, corresponding to the limits on the photon rest mass
being 1 × 10−40 g and 5 × 10−42 g, respectively, as mentioned
in section 2. In the above experiments, the electric potential on
the inner conducting sphere was measured. Maxwell [3] first
derived the relation between the deviation q and the potential,
and a more detailed interpretation was revisited by Fulcher and
Telljohann [29].

Suppose that the electrostatic force between two unit
charges is an arbitrary function F(r) of the distance r between
them. The electrostatic potential is given by

U(r) =
∫ ∞

r

F (s) ds. (4.1)

Then, considering a uniform distribution of a unit charge
over a conducting shell of radius a, the potential at a distance r

from the centre of the sphere is readily determined to be [30]

V (r) = f (r + a) − f (|r − a|)
2ar

, (4.2)

where

f (r) ≡
∫ r

0
sU(s) ds. (4.3)

Now, apply these expressions to the Cavendish type
experiments, and suppose that the radii of the two concentric
spheres are R1 and R2 (R1 < R2) with the charges Q1

and Q2 spread uniformly over them, respectively. Using
equation (4.2), then, one could get the potential on the inner
shell

V (R1) = Q1

2R2
1

f (2R1) +
Q2

2R1R2
[f (R1 + R2) − f (|R1 − R2|)]

(4.4)
and the potential on the outer shell

V (R2) = Q2

2R2
2

f (2R2)+
Q1

2R1R2
[f (R1 +R2)−f (|R1 − R2|)].

(4.5)
After the outer shell was charged by a potential V0, a part

of the charge would pass through the connecting wire into the
inner shell until the equilibrium of V (R1) = V (R2) ≡ V0 was
satisfied. Then, the charges piled up on the inner shell could
be determined:

Q1 = 2R1V0

− R1f (2R2) − R2[f (R1 + R2) − f (|R1 − R2|)]
f (2R1)f (2R2) − [f (R2 + R1) − f (|R1 − R2|1)]2

.

(4.6)

If Coulomb’s Law is valid, the potential of a unit charge
has the form U(r) = 1/r , hence f (r) ≡ r . Because the
two shells had been connected by a wire, the charge originally
given to the inner shell will end up at the outer surface of the
outer one, i.e. Q1 = 0, which is the essential consequence
of Coulomb’s Law. Actually, for a conductor of an arbitrary
shape, the charge distribution is so arranged that the electric
field inside the conductor vanishes. The aim of the experiments
to verify Coulomb’s Law is to find traces of the residual fields
inside the outer shell.

In Cavendish’s experiment, after the two shells are charged
and the connecting wire broken, the outer shell was removed
to infinity. The potential of the inner shell became

VC(R1) = Q1

2R2
1

f (2R1). (4.7)

In Maxwell’s case, after the connecting wire was broken,
the outer shell was then earthed instead of being removed,
which meant V (R2) ≡ 0. So the potential of the inner shell
can be expressed as

VM(R1) = V0

[
1 −

(
R2

R1

)
f (R2 + R1) − f (|R1 − R2|)

f (2R2)

]
.

(4.8)

Following Maxwell, suppose that the exponent in
Coulomb’s inverse square law is not 2, but 2 + q with |q| � 1.
In this case, for a unit point charge, we get

U(r) = 1

1 + q

1

r1+q
≈ 1

r1+q
, (4.9)

and to first order in q,

f (r) ≈ r(1 − q ln r). (4.10)
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Substituting (4.10) into (4.7) and (4.8), the link between the
potential and the deviation q would be given by the following
formulae in the experiments of Cavendish and Maxwell,
respectively,

VC(R1) ≈
(

R2

R2 − R1

)
qV0M(R1, R2), (4.11)

VM(R1) ≈ qV0M(R1, R2) (4.12)

where M(R1, R2) is a dimensionless geometrical factor of
order unity,

M(R1, R2) = 1

2

[
R2

R1
ln

R2 + R1

R2 − R1
− ln

4R2
2

R2
2 − R2

1

]
. (4.13)

Obviously, if q = 0, the potential of the inner sphere is
just zero, which is the case predicted by Coulomb’s inverse
square law. So, by detecting the potential on the inner
shell directly, one could obtain the deviation from Coulomb’s
inverse square law.

4.3. Dynamic experiments

In order to obtain a higher precision, modern experiments using
a similar arrangement were performed with high alternating
voltage applied to the outer shell accompanied by phase-
sensitive technology to detect the relative potential difference
between the shells. The motivation for concentric sphere
experiments since 1971 has been dominated by the possibility
that the photon rest mass may not be exactly zero rather than
testing for q. In this case, the relative potential difference
between the two spheres, according to (4.2) and (4.10), can be
expressed as

V (R2) − V (R1)

V (R2)
= qM(R1, R2), (4.14)

with the same expression for the geometrical factor M(R1, R2),
so that q is essentially the quotient of the measured potential
difference V (R2) − V (R1) and the applied voltage V (R2).

By now, the expected relation between the potential
difference and the deviation q has been obtained. In order
to determine the photon rest mass from experimental results,
it is also necessary to find the relation between µγ and the
potential difference.

Considering an idealized geometry of two concentric,
conducting, spherical shells of radii R1 and R2 (R1 < R2)

with an inductor across this spherical capacitor in which
there is no charge inside, an alternating potential of V0eiωt

is applied to the outer shell. In this case, a solution of the
massive electromagnetic field equation (3.8) can be written as
φ(r, t) = φ(r)eiωt . Then, the wave equation reduces to

(∇2 + k2
)
φ (r) = 0, (4.15)

where

k2 = ω2

c2
− µ2

γ . (4.16)

The exact result of the potential with the proper boundary
conditions is

φ(r) = V0
R2

r

eikr − e−ikr

eikR2 − e−ikR2
(r � R2) (4.17)

Choosing a spherical Gaussian surface at radius r between the
two shells and then using the expression (4.17) for the interior
region, the closed integral of the Proca equation (3.1) over the
volume from the interior to the Gaussian surface becomes∫

dV ∇ · E = −µ2
γ

∫
dV · φ(r). (4.18)

Then, a complete solution of the field inside a uniformly
charged single sphere of radius R2 can be obtained:

E(r, t) = µ2
γ

k2r2

V0R2

eikR2 − e−ikR2

[
ikr

(
eikr + e−ikr

)

− (
eikr − e−ikr

)]
eiωt · r

r
. (4.19)

Making a power series expansion of the electric field, keeping
in mind that kr < 1 and ω/c > µγ , and neglecting the second-
order term for the performed experiments, the above electric
field reduces to

E(r, t) ≈ −1

3
µ2

γ r
(
V0eiωt

) r
r
. (4.20)

Then, the relative potential difference between the inner and
outer shells is given as

V (R2) − V (R1)

V (R2)
= −1

6
µ2

γ (R2
2 − R2

1). (4.21)

This result shows emphatically that the relative potential
difference �V /V is independent of the frequency of the
applied alternating voltage, i.e. the boundary condition
problems in the dynamic experiments are the same as those in
the static experiments. Meanwhile, it hints that the quadratic
dependence of the potential difference on µγ makes this
method insensitive to a small value of µγ . The first use
of equation (4.21) and a description of the Cavendish type
experiments in terms of µγ were given in 1971 [13].

The first dynamic experiment dates back to Plimpton
and Lawton (1936) [31]. The electrostatic experiments of
Cavendish and Maxwell with concentric metal globes were
replaced by a quasistatic method, in which the difficulties
due to spontaneous ionization and contact potentials were
overcome by placing the detector inside the inner globe
and connecting it permanently to detect any evidence of the
potential difference between globes (figure 3). The detector
was employed as a resonance electrometer with a frequency
of about 2 Hz, which could improve sensitivity and reduce
the inductive effects due to simply opening and closing the
circuits of the applied voltage on the outer globe. As a
consequence of the potential difference between the two globes
induced by the voltage applied to the outer globe, any resonant
motion of the galvanometer could be observed through the
conducting window at the top of the outer globe using a
mirror and telescope. The conducting window, claimed by
the authors to be one of the essential points to the success of
the experiment, was a glass-bottomed vessel threaded into the
outer globe. It contained a solution of ordinary salt in water
with its surface flush with the top surface of the outer globe,
in which a disc of fine wire gauze, covering the glass and
soldered to the threaded rim of the vessel, was used to ensure
perfect conductivity. A harmonically alternating high potential
of about 3000 V, generated by a specially designed condenser
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Figure 3. Experimental equipment of Plimpton and Lawton for
testing the inverse square law of force between charges.

operating at the low resonance frequency of the galvanometer,
was finally applied to the outer globe. Tests were made to
detect the change in the potential of the dome relative to the
outer globe. The experimental result showed that no change in
the small heat motion of the galvanometer could be detected
during the course of the whole experiment for sensitivities of
the detector up to 1 µV. The radii of the two globes were 2.5 feet
and 2.0 feet (760 and 610 mm), respectively. Substitution of
the experimental parameter in the expressions (4.14) and (4.21)
then yielded the limit on the deviation from Coulomb’s inverse
square law of q < 2 × 10−9, and from this the limit on the
photon rest mass of mγ < 3.4 × 10−44 g can be estimated.

Cochran and Franken’s experiment [32] employed
concentric cubic conductors instead of concentric spheres, due
to the cost and awkwardness of constructing and using large
spheres. The most significant improvement was the application
of the ‘lock-in amplifier’ for detecting the minute potential
difference between the conducting surfaces, with an ability to
detect voltage amplitudes of 2×10−9 V. An alternating voltage
of about 1200 V with frequency ranging from 100 Hz to 500 Hz
was applied to the outer box. The authors finally gave two
values for the new bound on the deviation q from Coulomb’s
inverse square law: the first (limit of error) representing a
bound greater than the worst possible value obtained under
all conditions was |q| < 4.6 × 10−11, and the second (70%
confidence) representing a bound with a probable error of 70%
was |q| < 9.2 × 10−12, expressing it as the corresponding
bound mγ � 3 × 10−45 g on the photon rest mass. However,
due to the large amount of calculation involved in the cubic
configuration, it is impossible here to document explicitly the
errors the authors quoted.

A repetition of Plimpton and Lawton’s experiment was
reported in 1970 by Bartlett et al [33]. Instead of two
concentric spheres, this experiment adopted five concentric
spheres in order to improve the sensitivity and to help eliminate
errors introduced by stray charges. The voltage was applied
between the two outermost spheres, and the induced signal
between the two innermost was measured. The middle one
served as a shield. A potential difference of 40 kV at 2500 Hz
was induced between the outer two spheres. A lock-in detector
with a sensitivity of about 0.2 nV measured the potential
difference between the inner two spheres. Finally, the authors

Figure 4. Schematic set-up of Williams et al (1971) at Wesleyan
University. The 4 MHz and 10 kV in peak-to-peak voltage, obtained
by pumping energy into a resonant circuit formed by the two outer
shells and a high-Q water-cooled coil, is applied across the outer
two shells. A battery-powered lock-in amplifier, located inside the
innermost shell, is employed to search for any trace of this signal
appearing across the inner two shells. Three sets of optic fibres are
used for data transmitting, which are the reference signal for the
phase detector, the output of the voltage-to-frequency converter
(VFC) from the lock-in amplifier and the calibration voltage
periodically introduced into the system. The output signal is finally
analysed for evidence of a violation of Coulomb’s Law and the
existence of the photon mass.

obtained |q| � 1.3×10−13, expressed as the limit of the photon
rest mass being mγ � 3 × 10−46 g.

The experiment performed by Williams et al [13] was
representative of extraordinary precision within the laboratory
range. The experimental apparatus (figure 4) consisted of five
concentric icosahedra. The two outermost, with the inner one
of about 1.5 m in diameter, were charged to 10 kV peak to peak
with a 4 MHz sinusoidal voltage. Any deviation from the 1/r2

force law would be detected by measuring the line integral
of the electric field between the two innermost spheres, with
a detection sensitivity of about 10−12 V peak to peak. Data
were transmitted in and out by fibre optics, through holes in
the icosahedra. In order to prevent penetration of outer fields
through the holes, the fibres were used as a waveguide, whose
diameters were smaller than the cut-off frequency. Similar to
Bartlett et al the middle shell was added in order to prevent
stray electric and magnetic fields inside the sphere. A lock-in
amplifier was employed to enhance the sensitivity of the
detectable potential difference. To ensure the system worked
properly, a calibration voltage was periodically introduced into
the system on a third light beam while the reference beam
was working. In the experiment, a high-frequency voltage
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Table 2. Results of experimental tests of Coulomb’s law and the photon rest mass.

Author (date) Experimental scheme Deviation of q Upper limit on mγ /g

Robison (1769) Gravitational torque on a pivot arm 6 × 10−2 4 × 10−40

Cavendish (1773) Two concentric metal spheres 2 × 10−2 1 × 10−40

Coulomb (1785) Torsion balance 4 × 10−2 ∼10−39

Maxwell (1873) Two concentric spheres 5 × 10−5 1 × 10−41

Plimpton and Lawton (1936) Two concentric spheres 2 × 10−9 3.4 × 10−44

Cochran and Franken (1967) Concentric cubical conductors 9.2 × 10−12 3 × 10−45

Bartlett et al (1970) Five concentric spheres 1.3 × 10−13 3 × 10−46

Williams et al (1971) Five concentric icosahedra (2.7 ± 3.1) × 10−16 1.6 × 10−47

Fulcher (1985) Improved on Williams’ experiment (1.0 ± 1.2) × 10−16 1.6 × 10−47

Crandall et al (1983) Three concentric icosahedra 6 × 10−17 8 × 10−48

Ryan et al (1985) Cryogenic experiment (1.5 ± 1.4) × 10−42

was used in order to reduce the skin depth, which varied
as δ ∝ 1/

√
ω. The experimental result of three days of

data was statistically consistent with the assumption that the
photon rest mass is identically zero. Expressing the result as a
deviation from Coulomb’s Law in the form 1/r2+q , they gave
q � (2.7 ± 3.1) × 10−16, alternatively the limit on the photon
rest mass being mγ � 1.6 × 10−47 g.

The latest Coulomb null experiment with a similar
principle was proposed in 1982 by Crandall [34], who
introduced a slightly upgraded approach adapted for physics
students at several different college levels in view of a flexible
budget for the total cost. The main distinction in contrast with
earlier experiments was the three-sphere arrangement, instead
of five concentric spheres, and the geometry was inside-out
with respect to that of Williams et al. The motivation for
this change was to provide increased convenience for studies
by students. The radii of the three icosahedral spheres were
0.2 m, 0.5 m and 1.0 m respectively. The applied alternating
voltage on the two innermost spheres was 500 V peak to peak
with a frequency of 500 kHz. Differences in configuration only
resulted in differences in cost, as students in different grades
could obtain the corresponding bounds on the deviation from
Coulomb’s inverse square law and the limit on the photon rest
mass. The author and his collaborators claimed that they had
improved the values to q � 6 × 10−17 for the deviation from
Coulomb’s Law and mγ � 8 × 10−48 g for the photon rest
mass using traditional geometry.

In 1985, a completely different experiment to determine
the photon mass using Coulomb’s Law was conducted at a
temperature of 1.36 K by Ryan et al [35]. The motivation was
to understand the origin of parity and weak interactions which
had led to concepts such as spontaneous symmetry breaking.
The basic idea behind this proof for a massive photon was based
on the concept that particles were massless above a critical
temperature and would acquire a mass below this temperature.
Their null result established that the photon at 1.36 K had
a mass less than (1.5 ± 1.4) × 10−42 g, several orders less
sensitive than results of earlier experiments.

Finally, the results of experiments to test Coulomb’s
inverse square law are listed in table 2 as a comparison.
Coulomb’s Law is a fundamental law of electromagnetism,
and it seems pertinent to inquire to what extent this law is
experimentally known to hold, in particular its inverse square
nature. The above experimental results reveal that the validity
of its inverse square nature can be unassailable almost to a
certainty at the macroscopic level, the length scale of which

has been shown to be of the order of 1013 cm by laboratory
and geophysical tests reviewed above. As for the microcosmic
scale, the well-known Rutherford experiments on the scattering
of alpha particles by a thin metal foil gave an indication that
Coulomb’s Law would be valid at least down to distances
of about 10−11 cm, which is roughly the size of the nucleus.
Modern high energy experiments on the scattering of electrons
and protons proved that Coulomb’s inverse square law was
successful even down to the fermi range [36]. Thus, the
evidence from experimental results reveals that the inverse
square Coulomb’s Law is valid not only over the classical
range, but deep into the quantum domain also, a total length
scale spanning 26 orders of magnitude or more: this range is
impressive but still finite.

5. Discussions

5.1. Effect of irregular configuration

Equation (4.14), used to estimate the deviation q, could be
directly deduced from the results derived by Maxwell for
two concentric globes of radii R1 and R2, in which the
globes were assumed to be exact and perfect spheres and
the charges were uniformly distributed over them without any
variation. All those assumptions were made to facilitate the
computation. In fact, the configuration of the experiments
mentioned above changed the conditions somewhat, such as
concentric icosahedra instead of concentric spheres, holes
made in the globes, and so on.

As for irregularities in the shapes of those globes, it
apparently is not of crucial importance, since there would be
no electric field inside a cavity of any shape unless Coulomb’s
Law is invalid. However, Shaw [37] has proposed a conjecture
by virtue of the symmetry of the problem and the well-known
uniqueness theorem, which states that charge will distribute
itself uniformly over the surface of an isolated conducting
sphere. But the uniqueness theorem has proved to hold only
for two cases: Coulomb’s Law and the Yukawa potential
φ(r) = exp(−kr)/r , both of which satisfy a second-order
field equation—Laplace’s equation ∇2φ = 0 for the Coulomb
potential and the Helmholtz equation ∇2φ = k2φ for the
Yukawa potential. Excluding these two cases, charge may be
distributed on an isolated spherical conductor in any number of
non-equilibrium ways, or perhaps even none [37]. Obviously,
the distribution of charge between concentric conducting shells
has been at the heart of the most sensitive tests of the exponent
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in Coulomb’s Law since the days of Cavendish. Spencer
[38] has found spherically symmetric solutions under the
assumption that the potential of a point charge varies either as
exp(−kr/r) or as 1/rn. One might imagine that the induced
potential on an inner globe would depend on some particular
charge distribution that is not spherically symmetric, and then
by superposition of all possible distributions one can construct
an equilibrium distribution that is symmetric. Hence, the
irregularities in the spherical surface would be illuminated by
the spectrum of observed distributions.

As regards the holes made in the globes, calculations show
that the effect of the hole shows a quartic dependence on the
solid angle subtended by the hole at the centre of the sphere,
when no improving measures are adopted. However, this effect
will be significantly weakened to a negligible level by taking
technical precautions, such as covering the hole with a lid, or
by employing something like the ‘conducting window’ used
in the experiment of Plimpton and Lawton in 1936.

5.2. Improved result for Williams’s experiment

The geometrical factor M(R1, R2) occurring in (4.14) was
derived by Maxwell based on the special configuration of
two concentric globes with radii of R1 and R2. However,
Plimpton–Lawton modified Cavendish–Maxwell’s apparatus
by replacing the inner globe with a hemispherical dome on top
and a box containing the detector at the bottom, while Bartlett
et al used five concentric spheres and Williams et al employed
five concentric icosahedra instead of two globes. So, a more
refined calculation should be done to give an accurate result.
The improved result for the experiment of Williams et al was
reviewed in 1986 by Fulcher [39]. The exact expression for the
potential at a distance r from a sphere of radius a containing a
uniformly distributed charge Q would be

V (r) = Q

2ar
(
1 − q2

) [
(r + a)1−q − |r − a|1−q

]
. (5.1)

Applying this equation to the four spheres (the outermost two
and the innermost two), with radii r4 > r3 > r2 > r1, and
the outermost spheres with charges Q for r4 and −Q for r3, a
refinement of the original expression (4.14) can be obtained as

V (r2) − V (r1)

V (r3) − V (r4)
≈ qr4

r4 − r3
[M(r3, r2) − M(r3, r1)]

− qr3

r4 − r3
[M(r4, r2) − M(r4, r1)] = qF(r1, r2, r3, r4, ) ,

(5.2)

wherein the approximation of the first order was used to refine
the expression for the potential difference, and the geometrical
factor M was replaced by the conjunct geometrical factor F

dependent on the radii of the four spheres.
Another noteworthy point was the determination of the

effective radius to incorporate the differences between the
spheres and the icosahedra. There were two means to deal with
the problem: one in which the icosahedron was made to have
the same surface area as the sphere, which gave R = 0.83L

with L being the length of the triangular sides, and the other
which adopted the radius of the inscribed sphere as the effective
radius, which gave R = 0.76L. Due to the fact that the factors

appearing in the conjunct geometrical factor F depended on the
ratio of the radii, one would obtain the same value for the ratio
of the potential difference occurring in (5.2). Finally, using the
surface area criterion to define the effective radii, Fulcher gave
an improved result for the deviation from Coulomb’s inverse
square law,

q = (1.0 ± 1.2) × 10−16, (5.3)

which was a factor of about 2.5 times smaller than that reported
by Williams et al. As for the upper limit on the photon rest
mass, the analyses of Williams et al for the sensitivity of their
experiment were correct [39].

5.3. Possible improvements

For convenience of discussion, equation (4.14) is rewritten as

q = �V

V0M(n)
, (5.4)

where V0 and �V denote the applied high voltage and the
potential difference between conducting spheres, respectively.
From equation (5.4), it is evident that there are potentially three
ways to improve the experiment: (1) choose a larger ratio of the
sphere radii to increase the geometrical factor M(n); (2) detect
a smaller potential difference �V ; and (3) increase the applied
voltage V0.

As for the geometrical factor, M(R1, R2) is revised as
M(n) with 0 � (n = R1/R2) � 1, so

M(n) = 1

2

[
1

n
ln

1 + n

1 − n
− ln

4

1 − n2

]
. (5.5)

M(n) is a monotonic slowly changing function of n and only
reaches its maximum at n = 0, where M(0) = 0.3069,
while its minimum M(1) = 0 is shown in figure 5. So
even using a smaller value for n, this does not offer a
significant improvement on the deviation q from Coulomb’s
Law. However, equation (4.21) shows that the sensitivity to
µ−1

γ increases linearly with the size of the shells.
For further experiments, a crucial improvement in the

accuracy of the Cavendish method can be obtained by reducing
the Johnson noise (thermal noise) voltage and hence detecting
a smaller potential difference, which is given by the Nyquist
Theorem [40, 41],

〈V 2
noise〉 = 4kT �f Re Z, (5.6)

where k is the Boltzmann constant, T the absolute temperature,
�f the bandwidth, and Re Z the real part of the input
impedance. In the case of high frequency ω [4],

Re Z ≈ [R(ωC)2]−1, (5.7)

where R is the input resistance and C is the parallel
capacitance. From the expressions (5.6) and (5.7), the
approaches to decrease the Johnson noise are obvious: low
temperature, long observation time, high frequency alternating
voltage applied to the concentric spheres, and increase in the
input resistance. The most promising approach is to apply a
superconducting apparatus at low temperature, which would

S144 Metrologia, 41 (2004) S136–S146



Coulomb’s Law and the photon rest mass

Figure 5. The geometrical factor M(n) for spheres. The parameter n denotes the ratio of the radii between the inner sphere and the outer one.

indeed lower the noise voltage by several orders, but cooling
such a large apparatus would be a stupendous task.

The amplitude of the voltage applied to the outer
conducting sphere is not limited by theoretical restrictions but
by practical considerations. However, the frequency is limited
by the approximation used to deduce (4.20), namely kr < 1
and ω/c > µγ . Obviously, the rough range of the frequency
available should be cµγ < ω < c/r , which gives an ultimate
frequency of the order of 107 Hz for the general dimensions of
the laboratory experiment.

The investigation of the photon mass, or the deviation of
Coulomb’s Law in a sense, is not theoretical, but experimental.
As mentioned before, the limitations of experimental results
on the photon mass and the deviation of Coulomb’s Law are
becoming lower and lower. A question that arises naturally is:
is it necessary to strive continuously to lower the upper limit
in order to convince ourselves that the photon rest mass is
zero or non-zero? Or do we really need to continue to infinity
the succession of these upper limits if there are no theoretical
grounds appropriate for specifying the microscopic origin of
the photon rest mass at present? For experimental physicists
at least, the answer obviously is yes. But there is an ultimate
limit for meaningful experimental measurement of the photon
rest mass, which is dependent on the age and the dimensions
of the Universe. The limit below this ultimate bound, say
about 10−66 g estimated by the uncertainly principle, would be
thought of as meaningless or just zero. However, there is a
great gap between the current limits and the ultimate one, and
we could not guarantee that future attempts to improve this
limit will not lead to unexpected results about the photon rest
mass and the deviation from Coulomb’s inverse square law.
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