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The reader may demonstrate this explicitly by introducing Cartesian
coordinates rotated by ¢,. On the chord of Fig. 1(b), these coordinates
are equal to (X= py, y=p, tan 6), where §=¢’ —dy. The ds in Eq. (6)
can be replaced by dy, and the factor cos m¢’ expressed in terms of ¢
and 6. The term in sin m6 vanishes on integration.
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A popular demonstration which often accompanies the introduction of magnetic induction is
that in which a strong button-shaped magnet is dropped through a long copper or aluminum
tube. The induced currents cause a retarding force which dramatically slows the descent of the
falling magnet. Here, we describe methods of calculating and measuring the terminal velocity
and magnetic forces in the magnetic braking experiment. The techniques are quite accurate,
inexpensive to perform. and are suitable for introductory courses in electricity and magnetism.

I. INTRODUCTION

A popular demonstration often used in introductory
physics courses to illustrate the effects of magnetic induc-
tion is the one in which a strong button magnet is dropped
through a vertical copper or aluminum pipe. The changing
magnetic flux caused by the falling magnet induces eddy
currents in the pipe and the resulting forces cause the mag-
net to fall with a much reduced velocity. Students observ-
ing the demonstration for the first time expect the magnet
to descend at its freefall velocity and their response is often
accompanied by exclamations of surprise. Our experiment
is based on this popular demonstration. To make the ex-
periment quantitative, we wrap a magnetic pickup coil
around the copper pipe and take a little more care in set-
ting up the experiment than one normally does in the lec-
ture room demonstration.

Other experiments involving the braking action of a
magnetic field have been analyzed elsewhere. In their arti-
cle, Wiederick ef al! have presented a simple theory of
magnetic braking in a thin metal strip and have used it to
test the retarding action on a spinning aluminum disk. An
altematlve analysis of the same experiment is presented by
Heald.? Marcuso et al.>* have considered the braking effect
of a localized magnetic field on a spinning disk. They
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present both a careful calculatlon of the localized nonuni-
form field from a small magnet® and an ex?enmental anal-
ysis of the deceleration of a spinning disk” based on these
calculations. Rossing and Hull® have written a fairly ex-
tensive review article on magnetic levitation which involves
principles identical to those encountered in the analysis of
braking experiments. More recently, Saslow® has made a
comprehensive study of Maxwell’s theory of eddy currents
in thin conducting sheets and has applied these concepts to
MAGLEYV transportation systems. Saslow also discusses
the magnetic braking experiment which is the subject of
this paper. By assuming that the magnetic field of the fail-
ing magnet can be approximated by a dipole, he has been
able to calculate the terminal velocity of the falling magnet.
As will be seen later, this calculation overestimates the
velocity.

An advantage of the present system is its simple geom-
etry. As the button magnet falls through the vertical pipe,
its axis is aligned with that of the pipe. This forces axial
symmetry on the interaction between the magnetic field
and the cylindrical conducting wall and consequently pro-
duces a geometry in which the currents and forces have
cylindrical symmetry. By applying the basic laws of elec-
tricity and magnetism, we have been able to relate the

© 1993 American Association of Physics Teachers 1096
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Fig. 1. The apparatus consists of a suspended copper pipe and an embed-
ded pickup coil which is connected to a digital oscilloscope.

weight of the magnet and hence, the magnetic force, to the
induced electromagnetic force (EMF). Although we use a
digital oscilloscope to display the electrical signal, the ex-
periment could be interfaced to a digital computer through
an inexpensive A/D conversion board. In first year labs,
the slow speed at which the magnet falls is a nice feature of
the experiment, since it allows the student to see the evo-
lution of the trace on the oscilloscope as the magnet passes
through the pickup coil. There is an immediate and obvi-
ous connection between the oscilloscope trace and the eddy
currents circulating in the copper pipe.

In our presentation, we carry through two calculations.
In the first, the electrical power being dissipated in the
copper pipe is equated to the gravitational work being done
on the magnet as it falls. This enables us to measure the
weight of the magnet “electrically.” Although we talk
about the weight here, we are actually measuring the mag-
netic force on the falling magnet, since at equilibrium,
when the magnet is falling at terminal velocity, these two
forces, the gravitational and magnetic, have the same mag-
nitude. In the second calculation, we measure the strength
of the magnetic field of the magnet with a gaussmeter. This
enables us to determine the dipole moment of the magnet
which is then used in a numerical calculation to evaluate

COPPER PIPE WALL

|
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7 | o
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7

|
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|

Fig. 2. The pickup coil is embedded in the wall of the copper pipe at a
radius R.
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Table 1. Pertinent experimental parameters.

Button magnet (neodymium)

Length 6.4 mm
Length (with tape) ~18 mm
Diameter 12.6 mm
Magnetic moment 0.67 Am?
Weight (with tape) 0.060 N
Copper pipe
Inside radius 7.29 mm
Outside radius 7.96 mm
Conductivity 5.08%10" 0~ 'm™!
Wall thickness (6) 0.67 mm
Center of wall (R) 7.625 mm
Pickup coil
Wire diameter 0.275 mm
Number of turns 9
Terminal velocity of falling magnet
Measured 12.7+£0.4 cms™!
Dipole model 17.8 cms™!
Numerical model 13.0 ecms™!

the radial magnetic field in the copper pipe. Knowing the
radial magnetic field in the pipe enables us to predict either
the terminal velocity or the magnetic force on the magnet.
The values calculated from the theory and the experimen-
tal measurements are in good agreement, a feature which is
always welcomed by the student. The time required for the
measurements is relatively short and the cost of the appa-
ratus is likely to be less than $100 if standard measuring
equipment such as an oscilloscope, a computer, and/or a
gaussmeter are available.

II. THE EXPERIMENT

The apparatus is shown in Fig. 1. It consists of a sus-
pended copper pipe, about 0.5 m in length, with an embed-
ded pickup coil (9 turns) connected to a digital oscillo-
scope. The pickup coil is made from fine, varnished magnet
wire. The coil lead wires are twisted to minimize extrane-
ous magnetic pickup from the falling magnet and other

10
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Fig. 3. As the button magnet passes through the pickup coil, it generates
a trace on the oscilloscope. The wave form shown here is for a 9-turn
pickup coil.
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Fig. 4. As the button magnet falls through the pipe, it generates eddy
currents (/) which interact with the magnetic field and impede the rate of
fall. The horizontal arrows show the direction of the current. Here, the
south pole of the magnet (S) and the terminal velocity (¥) point down.

influences of electrical noise in the lab environment. As
shown in Fig. 2, the coil would normally be embedded in
the copper pipe to make sure that the coil wire lies at the
center of the conducting wall. In our experiment, we
placed the coil at a variety of depths to test our under-
standing of the theory. The suspension from the top en-
sures that the pipe hangs vertically.

We used inexpensive, 1/2-in. copper pipe, available in
12-ft lengths from a local building supply outlet. Since we
were not certain of its composition and resistivity, we bor-
rowed 10, 12-ft lengths from our supplier and measured
the resistance of the copper pipe as a function of its length.
We did this by measuring the resistance of the pipe with a
sensitive 4-wire ohmmeter as we shorted out sections of the
pipe which were connected in series by short lengths of
very tightly clamped copper braid. The resistivity was
computed from the slope of the resistance vs length graph
and the dimensions of the pipe. Its value is listed in Table
I along with the dimensions of the pipe.

For our magnet, we used a small, cylindrical neody-
mium’ magnet having a diameter of 12.6 mm and a length
of 6.4 mm. A single layer of transparent office tape was
wrapped around the magnet to make of it a longer cylin-
drical shape of about 18 mm length. This procedure im-
proves the magnet’s stability as it falls through the pipe
and reduces its tendency to wobble. Care must be exercised
to avoid letting these magnets fall on any hard surface as
they are quite brittle. Since it falls quite slowly, we gener-
ally caught the magnet with our hands as it fell out of the
pipe. A Hall effect gaussmeter was used to measure the
strength of the magnetic field at several positions on the
symmetry axis of the magnet. These values are used to
determine the magnetic moment which is used in a com-
puter model to predict the radial field. It is also necessary
to weigh the magnet. The dimensions, magnetic moment,
and weight of the magnet appear in Table 1.

In a typical experiment, the neodymium magnet is
dropped down the center of the pipe and induces a voltage
in the coil which is recorded on the oscilloscope. A typical
trace of the EMF as a function of time is shown in Fig. 3.

1098 Am. J. Phys., Vol. 61, No. 12, December 1993
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Fig. 5. The magnetic force on the magnet is plotted as a function of the
embedded radius of the pickup coil. One curve is generated from the
signal observed on the oscilloscope (M) while the other is based on the
computed value of B, (3). The highlighted point represents the measured
weight of the magnet plotted at the center of the pipe wall. The outer edge
(OE) of the pipe is also indicated on the figure.

In the following section, we shall show how this data can
be used to measure the magnetic force on the magnet.

III. POWER DISSIPATION AND GRAVITATIONAL
ENERGY

As the button magnet falls through the pipe, the chang-
ing magnetic flux generates eddy currents which flow in the
0 or azimuthal direction. The magnet quickly reaches ter-
minal velocity and the currents reach a steady state value.
The magnitude of the eddy current at any position is re-
lated to the changing flux by Faraday’s Law. The diagram
in Fig. 4 represents the magnet, its field, and the eddy
currents in the wall of the copper tube. Two current lobes
flowing in opposite directions are formed, one above and
one below the falling magnet. For our magnet and pipe, a
total current of about 5 A flows in each lobe.

In this derivation, we are going to relate the weight of
the falling magnet to the electromotive force detected by
the pickup coil and the properties of the pipe. For a magnet
falling at constant velocity, the electrical power dissipated
in the pipe is equal to the rate at which gravitational energy
is lost by the magnet. The power dissipated in a volume
element dV is

dP=J -EdV, (1)

where J is the current density and E is the electric field.
For the cylindrical geometry of our problem, it is conve-
nient to rewrite this equation as

dP=Jy(rz)Eq(rz)2nrdrdz, (2)

where it has been assumed that the 6 components of J and
E are functions of r and z. Now J, can be eliminated by
noting that J=0E where o is the electrical conductivity of
the pipe. For a thin walled pipe, we replace dr with &, the
thickness of the wall, and assume that E, is an average
value measured in the middle of the pipe wall at a radial
distance R from the axis. The power dissipated in the ele-
ment of length dz is thus

MacLatchy, Backman, and Bogan 1098



dP=0F5(z)2mRS dz. (3)

The average electric field in the copper pipe is related to
the EMF, ¢, detected by the coil at position z, by the fol-
lowing equation,

Eq(2)= (4)

€

27R’
The voltage measured on the oscilloscope is related to € by
V(t) =Ne(t) where N is the number of turns in the coil.
The coil voltage is time dependent but can be related to the
z coordinate by noting that dz=wvdt where v is the terminal
velocity of the falling magnet. Finally, the total electrical
power is found by substituting Eq. (4) into Eq. (3) and
integrating. Thus

w‘s f dt, (5)

where ¢, and 1, are chosen so as to include the entire wave
form generated by the pickup coil. Now the rate at which
gravitational work is being done on the falling magnet is
mgv. Thus the weight of the magnet and the magnetic
force, since they are of equal magnitude when the magnet
is falling at the terminal velocity, are related to the coil
signal by

F od tzezd gd J‘fz V1d 6
M=ME=oTR J-,l =2mkw? ), V(0 (6)

The voltage V(¢) is normally measured at the mean radius,
R. To determine the sensitivity to the positioning of the
pickup coil, we calculated the magnetic force by evaluating
the right-hand side of Eq. (6) for several positions of the
coil winding: first, on the outside surface of the pipe and
then at several different groove depths. A plot of these
values as a function of the coil’s distance from the axis of
the pipe is shown in Fig. 5. Notice that Eq. (6) gives the
correct weight when the center of the coil is placed near the
center of the pipe wall.

It is worthwhile noting that Eq. (6) has been derived
without the use of concepts beyond Faraday’s law and the
integration was performed on a microcomputer with the
aid of a short BASIC program. Thus this experiment could
be performed at the introductory physics level.

IV. VELOCITY OF THE FALLING MAGNET

The velocity of the falling magnet can be predicted by
considering the retarding force acting on the magnet or,
conversely, on the current circulating in the pipe. In a
manner similar to that used by Marcuso ez al.,® the current
density can be represented as J=0E= a(vXB) and we
can write J=aEg=o0vB, for the present geometry. Thus,
the eddy current circulating in a ring-shaped element of the
pipe having height dz is just

J8 dz=0Ey dz=0vB,5 dz. (7

In Eq. (7), J& has the dimensions of current per unit
length. The force on a segment of the ring is given by

=J5d1X B dz, (8)

where dl is an element of length taken in the 6 direction.
This element of force has components which point in both
the radial and axial directions. If we integrate around the
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circumference of the ring, the radial component of the
force disappears and we are left with a z component

dF,=2nRJSB, dz=2mRovd B dz. 9)

The total force acting on the magnet is obtained by inte-
grating Eq. (9). By rearranging and setting the total force
equal to the weight of the magnet we get the terminal
velocity

™ (10)
—21rR0'6fZBf dz’
This equation represents the terminal velocity of the falling
magnet in terms of the weight of the magnet, the dimen-
sions of the pipe, the conductivity of the pipe, and the
magnetic field of the magnet. Several of these parameters
can be eliminated by replacing the weight of the magnet
with its value from Eq. (6). If this is done, we find that

f;sz(t)dt
T (RN [2Bldz’

(11)

This equation can be used to calculate v without the need
of determining a value for a. However, Eq. (11) does not
explicitly represent the terminal velocity in terms of the
basic properties of the apparatus, but represents a determi-
nation of the velocity of a falling magnet whether it be the
terminal velocity or not. To evaluate either Eq. (10) or Eq.
(11), B, must be determined at the center of the pipe wall.

V. THE RADIAL MAGNETIC FIELD AND ITS
INTEGRAL

Two methods of evaluating B, were considered: one was
based on measuring B, directly and then using a polyno-
mial to generate an integrable function, while the other was
based on evaluating the dipole moment of the magnet and
then calculating the value of B, from a computer model.
Although the direct measurement of B, may seem the bet-
ter choice, experimentally, it is the less accurate method
because of the difficulty in precisely positioning the gauss-
meter probe at off-axis positions. With the dipole tech-
nique, B, is measured at several points on the axis of the
magnet where the positioning is easier and the probe signal
has a maximum when the probe is properly aligned with
the field.

Let us begin by representmg the field of the neodymlum
magnet by a dipole field.® Although this representation is
inadequate near the magnet where the radius of the magnet
is comparable to the distance from the center of the magnet
to the field point, the dipole equations will be useful when
the computer model is introduced later in the discussion.
For a point on the axis of the magnet, the axial magnetic
field is

2ugmp

B ="

and the radial magnetic field in the wall of the pipe at
radius R is

(12)

3pomp Rz
4w (R*+2)%%’

where m g is the magnetic moment. If Eq. (13) is placed in
Eq. (10) and integrated, an approximate value for the fall-

Br(z) =

(13)
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Table I1. Axial magnetic field [ B,(z) in tesla]. Distance in millimeters
from the center of the magnet.

Distance Measured Dipole Numerical
10 0.083 2 0.134 0.0909
20 0.014 6 0.016 7 0.0152
30 0.004 6 0.004 95 0.004 77
40 0.002 09 0.002 09 0.002 04
50 0.001 06 0.001 07 0.001 06

ing speed of the magnet can be obtained. The integral for
the square of the magnetic field is
ST ugmy

+ B2
f_w P 42=128 168’
and the resulting velocity is

128(mg) (8R*)
=z o 17
4506uym’y

(14)

(15)

This expression represents the dipole approximation for
the terminal velocuy and is identical to the express1on pub-
lished by Saslow.® For the magnet and copper p1pe of our
experiment, the value computed from Eq. (15) is about
40% larger than the measured value, both of which are
recorded in Table I. In general, the accuracy of this equa-
tion will depend on the sizes of both the pipe and the
magnet but it is mainly linked with the inability of the
dipole model to correctly represent the magnetic field near
the magnet.

A more accurate prediction of the radial magnetic field
can be achieved with a numerical calculation of B,. If we
assume that the magnetization of the neodymium magnet
is uniform throughout, then its external magnetic field is
equivalent to that produced by a uniform electric current
on its cylindrical surface. Thus, the magnet can be numer-
ically simulated by a small coil of » turns, having the same
dimensions and magnetic moment as the magnet. The re-
lationship between the magnetic moment of such a coil and
the current in its windings is -

0 2 4 6 8 10 12 14 16 18 20
AXIAL DISTANCE FROM MAGNET CENTRE (mm)

Fig. 6. The radial magnetic field computed from the dipole model (00) is
less than that computed from the computer model (W) in the region near
the magnet. The calculations are for mz=0.67 A m%.
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Fig. 7. These curves represent the EMF detected by the 9-turn pickup coil
as the falling magnet passes through. One curve (+) is taken from the
raw data on the oscilloscope screen while the other (0) is plotted from
Eq. (17) as explained in the text.

mg=ma*nl, (16)

where a is the radius of the coil, here equal to that of the
magnet. For our purposes, we chose » to be 15 although
other values would be suitable. The computer model is
similar to one developed by Merrill.’ Each of the circular
loops are divided into 36 straight segments and the Biot—
Savart law is used to compute the components of the mag-
netic field at each point by summing the field produced by
each of the segments. The final field of the coil is computed
by summing the contributions from each of the 15 wind-
ings. The magnetic moment, and consequently the current
in the windings, must be determined from measurements of
the magnetic field.

To determine the magnetic moment, the axial magnetic
field of the magnet was measured with a gaussmeter at
distances of 10, 20, 30, 40, and 50 mm from the center of
the magnet. The magnetic moment was determined by fit-
ting Eq. (12) to the magnetic field values at 40 and 50 mm
where the dipole best approximated the actual magnetic
field. The resulting value for the magnetic moment was
0.67 A m>. From Eq. (16), with n=15 and =6.3 mm, the
equivalent current flowing in the 15-turn coil of our model
is 358 A, an interestingly large value for such a small coil.
The measured axial magnetic field, the axial magnetic field
computed from the dipole model, and the axial magnetic
field computed from the coil model are compared in Table
IL. It is clear that the dipole model is less accurate near the
magnet while the values generated by the computer model
are closer to the measured field strength. The results of the
modeling are shown in Fig. 6 where the strength of the
radial magnetic field is shown for both the dipole and c01l
models. The field is for a magnetic moment of 0.67 A m® at
a radius of 7.63 mm, the center of the pipe wall. As pre-
viously noted when the dipole field was used to compute
the velocity of the falling magnet, the radial dipole field
under estimates the field near the magnet.

V1. CALCULATIONS WITH B,

When the results represented in Fig. 6 for the coil model
are used to evaluate the integral in Eq. (10), the velocity of

MacLatchy, Backman, and Bogan 1100



the falling magnet is determined to be 13 cms™'. The
velocity, determined by timing the magnet’s fall through a
50-cm length of pipe with a stopwatch, is 12.7+0.4
cm s~), in quite good agreement with the calculated value.
We have attempted to compare the magnetic force with the
viscous drag on the falling magnet to account for the lower
value but find that the estimated drag forces are less than
0.1% of the magnetic force. Thus the terminal velocity
quoted here is dominated by magnetic effects and the dif-
ference between the two measurements of velocity is most
likely due to experimental error.

If we examine Eq. (7), we see that the pickup coil volt-
age can be related to the radial field. Thus

V(t)=Ne(t)=N2mREy(t)=N2mRvB,[z(t)], (17)

where z(t) represents the distance from the coil to the
magnet at time ¢. If the data from Fig. 6 are used along
with the velocity, then Eq. (17) can be used to generate the
voltage wave form detected by the oscilloscope. This pro-
cedure has been followed to produce the theoretical curve
seen in Fig. 7. Once again, the agreement between the
measured EMF and the calculated value is quite good.

Finally, we use the predicted magnetic field and the ter-
minal velocity to calculate the magnetic force and show the
result in Fig. 5. The force computed from the EMF model
[Eq. (6)] is also shown on the same figure. The values
computed from the magnetic field are 3%-5% lower than
those computed from the EMF model. Also shown on the
graph is the measured weight of the magnet and the loca-
tion of the center of the pipe wall. Notice that the two
curves pass very close to this point, indicating that the best
depth to place the pickup coil is at the center of the wall.

We have carried through several procedures to test the
accuracy of our measurements and the computer modeling.
For example, the accuracy of the computer model was
tested by comparing its value for the axial magnetic field
with that calculated from analytical equations for an iden-
tical coil. The difference was negligibly small. The uncer-
tainty in the gaussmeter measurements were checked by
calibrating the gaussmeter against the known field gener-
ated by a Helmholtz coil. The uncertainty was determined
to be =3%.

A problem which we were unable to eliminate lies in the
difficulty of determining an accurate value for the magnetic
moment from the magnetic field measurements. As is eas-
ily seen in Eq. (12), the far axial field depends on 1/2° so
that any small error in the placement of the gaussmeter
probe can generate a large error in the measured B,. Since
our experimental value of m g is based on B,, this error can

have a serious effect on the measured value of m 5. As well,
we measure the axial field far from the magnet where the
field values are low and subject to larger uncertainties. This
procedure could produce a large uncertainty in the mag-
netic moment and the calculated radial magnetic field near
the magnet. Consequently, care must be exercised in mak-
ing these measurements in order to avoid large errors when
evaluating the integral contained in Eq. (10). In spite of
these difficulties, our final results agree quite well with the
measured values of weight and terminal velocity for the
magnet.

VIIL. DISCUSSION

This magnetic braking experiment is an ideal candidate
for the undergraduate physics laboratory in electricity and
magnetism. Besides being relatively inexpensive, the results
are quite dramatic and the principles involved are both
fundamental and wide ranging. Our measurements have
been presented as a function of the position inside and near
the pipe wall. As one might guess, the best results are for
values of € and B, at the center. Thus, for a student run
experiment based on a single measurement, the best choice
for the depth of the pickup coil or the calculation of B,
would be at the center position. The two approaches rep-
resent two levels of computation, one being much less in-
volved than the other. Thus the experiment can be pre-
sented at several levels in the physics curriculum.
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first and name afterwards.”

SHORT CIRCUITS

When two bulbs are connected in series and a wire is then connected across one of the bulbs
(short circuit), many students (even among those in an engineering-physics course) are as-
tonished by the fact that the shorted bulb goes out and the other burns more brightly. They

- have all heard the term “short circuit” but very few have any operational or conceptual
awareness of its meaning, nor do they visualize the accompanying effects. All they know is that
a short circuit is something *“bad.” They should be led into forming the concept through “idea

Arnold B. Arons, 4 Guide to Introductory Physics Teaching (Wiley, New York, 1990), p. 171.
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