
Teaching Faraday’s law of electromagnetic induction in an introductory
physics course
Igal Galili, Dov Kaplan, and Yaron Lehavi 
 
Citation: Am. J. Phys. 74, 337 (2006); doi: 10.1119/1.2180283 
View online: http://dx.doi.org/10.1119/1.2180283 
View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v74/i4 
Published by the American Association of Physics Teachers 
 
Related Articles
Quantitative analysis of the damping of magnet oscillations by eddy currents in aluminum foil 
Am. J. Phys. 80, 804 (2012) 
Rolling magnets down a conductive hill: Revisiting a classic demonstration of the effects of eddy currents 
Am. J. Phys. 80, 800 (2012) 
A semiquantitative treatment of surface charges in DC circuits 
Am. J. Phys. 80, 782 (2012) 
Relation between Poisson and Schrödinger equations 
Am. J. Phys. 80, 715 (2012) 
Magnetic dipole moment of a moving electric dipole 
Am. J. Phys. 80, 645 (2012) 
 
Additional information on Am. J. Phys.
Journal Homepage: http://ajp.aapt.org/ 
Journal Information: http://ajp.aapt.org/about/about_the_journal 
Top downloads: http://ajp.aapt.org/most_downloaded 
Information for Authors: http://ajp.dickinson.edu/Contributors/contGenInfo.html 

Downloaded 02 Oct 2012 to 157.92.4.72. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission

http://ajp.aapt.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/965673950/x01/AIP/WebAssign_AJPCovAd_1640x440_10_02_2012/WebAssign_Download_Banner_Physics_09062012.jpg/7744715775302b784f4d774142526b39?x
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=Igal Galili&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=Dov Kaplan&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=Yaron Lehavi&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.2180283?ver=pdfcov
http://ajp.aapt.org/resource/1/AJPIAS/v74/i4?ver=pdfcov
http://www.aapt.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.4725416?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.4730939?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.4731722?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.4722788?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.4712308?ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://ajp.aapt.org/about/about_the_journal?ver=pdfcov
http://ajp.aapt.org/most_downloaded?ver=pdfcov
http://ajp.dickinson.edu/Contributors/contGenInfo.html?ver=pdfcov


Teaching Faraday’s law of electromagnetic induction in an introductory
physics course

Igal Galili, Dov Kaplan, and Yaron Lehavi
Science Teaching Department, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

�Received 10 June 2005; accepted 3 February 2006�

Teaching Faraday’s law of electromagnetic induction in introductory physics courses is challenging.
We discuss some inaccuracies in describing a moving conductor in the context of electromagnetic
induction. Among them is the use of the ambiguous term “area change” and the unclear relation
between Faraday’s law and Maxwell’s equation for the electric field circulation. We advocate the use
of an expression for Faraday’s law that shows explicitly the contribution of the time variation of the
magnetic field and the action of the Lorentz force, which are usually taught separately. This
expression may help students’ understanding of Faraday’s law and lead to improved problem
solving skills. © 2006 American Association of Physics Teachers.
�DOI: 10.1119/1.2180283�
I. INTRODUCTION

Faraday’s law of electromagnetic induction is given by

E = −
d�

dt
, �1a�

where E represents the electromotive force �emf� induced in
a circuit and � is the magnetic flux through the circuit of
area A,

� =� �
A

B · dA . �1b�

Although Eq. �1� describes simple laboratory settings, it pre-
sents a conceptual challenge for students and teachers of in-
troductory physics. We emphasize that the integral form of
Faraday’s law in Eq. �1� includes all cases, including trans-
former emf �Ref. 1� and motional emf. In the latter case,
Faraday’s law includes not only closed circuits but also open
circuits and those with moving segments �segments in mo-
tion relative to the other parts of the circuit�, such as the
Faraday disc and unipolar generator.

In this paper we comment on some remarks given in the
Feynman Lectures2 and show that the integral form of Fara-
day’s law explains the cases of motional emf that were pre-
sented as problematic. Faraday’s disc was mentioned as an
example of the failure of the “flux rule,” in which the emf of
induction is created despite an “unchanged circuit.” Two ro-
tating plates, touching at a point and creating a closed circuit
located in a magnetic field, was given as an example of the
creation of an insignificant emf following a big change of the
linked magnetic flux.

Faraday’s law provides a good opportunity to illustrate
Einstein’s relativistic perspective on electromagnetic
induction.3 In connection with motional emf, the idea of area
change and change of orientation used in many textbooks,4

should be refined to reduce confusion. We illustrate our dis-
cussion with several examples that might be useful in teach-
ing electromagnetic induction.

II. FARADAY’S LAW OF ELECTROMAGNETIC
INDUCTION

Most introductory university-level texts present electro-

magnetic induction starting with transformer emf in geo-
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metrically linear5 circuits.6 Equation �1� is then presented.
Motional emf is considered subsequently, and it is shown
that Eq. �1� also accounts for it. Alternatively, we can con-
sider a change of magnetic flux through a conducting loop
�see Fig. 1� in the inertial frame of reference where the cir-
cuit is moving. The complete derivative of the magnetic flux
through the surface A is

d�

dt
= � ��

�t
�

v=0
+ � ��

�t
�

B=const
. �2�

In standard notation �see Appendix�:

d�

dt
=� �

A

�B

�t
· dA − �

L

�v � B� · dL . �3�

By using the form of Faraday’s law in Eq. �1�, we obtain7

E = −� �
A

�B

�t
· dA + �

L

�v � B� · dL . �4�

The form of the emf in Eq. �4� relates two phenomena. The
first term,

Etransformer = −� �
A

�B

�t
· dA , �5�

accounts for the motionless case of transformer emf, termed
by Faraday “volta-electric induction”8 �note the partial de-
rivative� and corresponds �after stating the validity for any
path of integration� to Maxwell’s equation for the curl of the
electric field,

� � E = −
�B

�t
. �6�

The second term,

Emotional = �
L

�v � B� · dL , �7�

represents motional emf, termed by Faraday as “magneto-
electric induction,”9 and arises from the definition of the
complete derivative and the Maxwell equation, B	dA=0. It
is immediately recognized that the integrand of Eq. �7� gives

the Lorentz force
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Fm = q�v � B� , �8�

acting on a charge q that moves with the speed of the circuit.
Thus, the Lorentz force naturally follows from the definition
of the rate of flux change d� /dt as a complete derivative.

There are cases where Faraday’s law of induction is ap-
plied not to circuits, but to extended bodies, such as a Fara-
day disc. In this case, according to the derivation in the Ap-
pendix, the path of integration in the Lorentz term should
reflect the motion of the material of the conductor that closes
the circuit, which might be in motion relative to other parts
of the circuit.10 This understanding is important for calcula-
tions of ��� /�t�B=const as shown in the following examples.

In Ref. 2 it is suggested that the integral form of Faraday’s
law, Eq. �1�, can fail to account for electromagnetic induc-
tion. Two examples of such failures are given, and it is stated
that these exceptions demonstrate the superiority of the dif-
ferential laws, Eq. �6� and Eq. �8�, over the integral form.
This point is not mentioned by other introductory physics
texts.11 However, Faraday’s law in its integral form is indis-
pensable in introductory physics courses in situations such as
the electric generator for which Eq. �6� is obviously not prac-
tical. Also, partial derivative equations such as in Eq. �6� are
beyond the scope of the introductory course and the equiva-
lence of Faraday’s law with Maxwell’s equation regarding
the circulation of the electric field requires knowledge of
field transformations.12

In addition, the composite nature of Faraday’s law should
attract the attention of the student:

“We know of no other place in physics where such
a simple and accurate general principle requires for
its real understanding an analysis in terms of two
different phenomena. Usually such a beautiful gen-
eralization is found to stem from a single deep un-
derlying principle. Nevertheless, in this case there
does not appear any such profound implication. We
have to understand the rule as the combined effects
of two quite separate phenomena.”13 �Italics in the
original.�

By considering the two different contributions to the elec-
tromagnetic induction, a teacher can discuss why this inter-
pretation was challenged by Einstein in his seminal paper of

3

Fig. 1. A closed loop in a magnetic field B. Lt and Lt+�t represent two
positions of the loop with areas At and At+�t, respectively.
1905.
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III. A RELATIVISTIC PERSPECTIVE IN THE
INTRODUCTORY COURSE

Electromagnetism is not consistent with classical Newton-
ian mechanics, but we can present relativistic concepts in a
qualitatively correct way even in an introductory course.14,15

In this context it is important to demonstrate by a simple
example that the distinction between the two types of emf’s
is not absolute. The motional emf’s detected by an inertial
observer may appear as a transformer emf to another ob-
server. It is sufficient to use approximations valid for v /c
�1 in which the theory of relativity allows the magnetic
field to be observer independent.16

Consider the rectangular conducting loop ABCD �sides b
and d� �see Fig. 2� moving in the x direction with a constant
velocity v through the magnetic field B, as observed in the
laboratory reference frame SL. The magnetic field increases
linearly in the z direction with magnitude BL= �0,0 ,B0x�
where B0 is a constant. The location of the front and rear
sides of the loop at time t is x1=vt and x2=b+vt, respec-
tively. The magnitude of the magnetic field at these locations
is BL,1= �0,0 ,B0vt� and BL,2= �0,0 ,B0b+B0vt�. The ob-
server SF moving with the loop measures the magnetic field
through the loop which changes with time.

The two observers explain the phenomenon of electromag-
netic induction as follows. Observer SL observes the moving
conducting frame and accounts for the resulting motional
emf using Eq. �7� and finds

Emotional = �
ABCD

�v � B� · ds = − vB0A , �9�

where A=bd, the area of the loop ABCD. Observer SF sees
no motion, records the different magnetic field Bz=B0�xF

+vt�, and accounts for the transformer emf using Eq. �5�:

Etransformer = −� �
A

�BE

�t
· dA = − vB0A , �10�

because �BF /�t= �0,0 ,B0v�. The equality of Eqs. �9� and
�10� demonstrates the relativity of the emf as either trans-
former �the interpretation of SF � or motional �the interpreta-
tion of SL�.

This example unifies the two types of electromagnetic in-
duction similar to the unification of the electric and magnetic
fields when considering the force exerted on an electric
charge as interpreted by different inertial observers. Just as
the identification of the force as magnetic or electric changes
with a change in reference frame, the identification of the

Fig. 2. A rectangular conducting loop ABCD �sides b and d� moves along
the x axis in a plane through a magnetic field with a linearly increasing
intensity B �0,0 ,B0x�.
type of electromagnetic induction can change while preserv-
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ing the total emf as an invariant. For the observer for whom
the frame is motionless, the only contribution is

Etransformer = �
L

EF · dL = − � ��

�t
�

v=0
. �11�

Because of the weak approximation �v /c�1� the electric
fields, as observed by the two observers are related by17

EF = EL + v � B , �12�

and the emf in Eq. �11� can be expressed by using the fields
in the laboratory frame:

Etransformer = �
L

�EL + v � B� · dL , �13�

which leads to Eq. �4�. Here the students will arrive at the
understanding of the “single deep underlying principle”
which unifies the “two different phenomena,” the relativistic
nature of the electromagnetic field.

IV. AREA AND PATH CHOICE

The use of relativity is optional. Whether or not the treat-
ment is relativistic, there are other conceptual problems with
the application of Faraday’s law in the form of Eq. �1�. The
form in Eq. �4� has pedagogical advantages that reinforce the
discussion in introductory texts. It is common to consider a
uniform field B and derive the following:18

Einduction = −
d�

dt
= −

d�B · A�
dt

= − A ·
dB

dt
− B ·

dA

dt
, �14�

where A represents the area enclosed by a circuit, and the
second term represents the change of area and the change of
orientation. To clarify the meaning of these terms, we relate
Eqs. �4� and �14�. For a uniform magnetic field the second
term of Eq. �4� becomes

Emotional = �
L

�v � B� · dL = − B
dAm

dt
, �15�

with

dAm

dt

 �

L
v�dL . �16�

The definition of Am is not unique and only the change of
area dAm is physically meaningful �v� represents the veloc-
ity component perpendicular to the element of the moving
conductor and the subscript m in Am emphasizes the relation
to the charges in motion�. The integration in Eq. �15� accu-
mulates the effect of the Lorentz force and Eq. �16� reflects
the area swept out by the movement of the points on the
conductor.19 In successful uses of area change in the deter-
mination of the emf, the area is given by Eq. �16�; in con-
trast, if the area is not given by Eq. �16�, Faraday’s law
appears to fail as we will show in the following examples.

To explain Faraday’s disc generator �a conducting disc ro-
tating between the poles of a permanent magnet with the disc
at right angles to the magnetic field�, we can apply Eq. �7�
and sum the action of the magnetic force on the charges
moving with the disc and located in the segment oc �see Fig.

3� closing the circuit:
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Emotional = �
L

�v � B� · dL = �
OC

�rBdr =
1

2
�R2B , �17�

where � is the angular velocity and R is the radius of the
disk. Alternatively, we can obtain the same result from the
area change of the disc sector ocd �see Fig. 3�a��.20 The result
obtained in this way is consistent with the definition of Am
�see Fig. 3�b�� suggesting the appropriate area to be ad-
dressed. Indeed, the flux change is not obvious, whereas the
explanation of the emf by the Lorentz force is straightfor-
ward.

In this regard it is interesting and educational to discuss
with students the reasoning used in The Feynman Lectures:

“As disc rotates, the “circuit,” in the sense of the
place in space where the currents are, is always the
same ¼ Although the flux trough the “circuit” is
constant, there is still an emf ¼ Clearly, here is a
case where v�B force in the moving disc gives
rise to an emf which cannot be equated to a change
of flux.”21

The last sentence of the quote contradicts the expression
for the change of flux given in Eq. �3�.

The same approach resolves the puzzle of the rotating
plates discussed in The Feynman Lectures. Two metal plates
with slightly curved edges �see Fig. 4� are placed in a uni-

Fig. 3. The external part of the Faraday disc generator is connected to the
terminals o and c. �a� The induced emf in the rotating disc is related to the
rate of change of the area ocd �swept out by the moving radius� giving the
change of the circuit, including the external part which does not change. �b�
The same emf can be calculated using the velocities of the charges along the
radius r �drift velocities are neglected�.

Fig. 4. Feynman’s rotating conducting plates in a magnetic field B. The
circuit ABPCD is closed through the point of contact P which is moving
from P� to P�. The area change of the circuit is shown by the dotted lines

�sectors S1 and S2�.
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form magnetic field perpendicular to their surfaces. The
plates make contact at a single point P comprising a com-
plete circuit ABPCD. When the plates are rocked, the point
of contact moves from P� to P�. We can imagine the circuit
completed through the plates on the dashed lines connecting
points B, P, and C, and might consider the area change of the
circuit as caused by the movement of these lines: the area
S1+S2 �between the dashed lines to the positions P� and P��.
It is stated that there is “a somewhat unusual situation in
which the flux through a circuit �again in the sense of the
place where the current is� changes but where there is no
emf.”21 However, although the area S1+S2 does represent the
change of the circuit area, it does not reflect the velocities of
the material points of the plates, as required by Eq. �3� for
the flux change. This mismatch occurs because the point P is
not a physical object. In fact, the material points of the plates
move in the magnetic field with smaller velocities �and in the
opposite direction� than does point P.22 This difference ex-
plains the fact stated by the authors of Ref. 2 that the Lorentz
force causing the emf causes it to be small. Strictly speaking,
as in Faraday’s disc, the induced currents in the rotating
plates �as in any extended conductor� cannot be reduced to a
line of current and any treatment introducing a straight path
of integration remains approximate. However, the qualitative
argument explaining the low magnitude of the emf suffices
for an introductory course.

The treatment of open and composite circuits using Eq. �1�
might challenge students who look for an area change. To
find the latter they should create an imaginary area that re-
flects the movement. The valid choice is provided only by Am
as defined by Eq. �16�. This area may have nothing to do
with the area of the circuit in which the electrical current is
induced �see Fig. 5�.

We note another important point about the path of integra-
tion. Unlike many texts, in the Berkeley series we find the
following definition of Faraday’s law:

“If C is some closed curve, stationary in coordi-
nates x ,y ,z, if S is a surface spanning C, and if
B�x ,y ,z , t� is the magnetic field measured in x ,y ,z
at any time t, then ¼ ”23 �Eq. �1� follows�.

The terms curve and stationary are seldom used by other
authors and were added to justify the statement made later in
the text that the integral form of Faraday’s law is equivalent
to the differential form of Maxwell’s equation �6�. For such
an equivalence to be valid, the path of integration is arbitrary
and stationary.

Obviously, it is preferable to explain the relation of Max-
well’s equation to the curl of the electric field in its integral

Fig. 5. The conducting frame U slides over the conducting plate P in a
magnetic field B. An induction emf causes current in the circuit. The area
change Am, shown by the dashed line, is relevant for the emf of induction,
even though the area of the circuit does not change.
form:
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�
L

E · dL = −� �
A

�B

�t
· dA , �18�

with the first term in Eq. �4�. As mentioned, a complete un-
derstanding of the relation between Eq. �1� and Eq. �18� can
be obtained only by considering special relativity, which in-
troduces field transformations that show, using Eqs. �11� and
�12�, how Maxwell’s equation for a stationary observer, Eq.
�18�, produces Faraday’s law, Eq. �4�, which includes the
motion of a conducting loop.

V. EXAMPLES

In the following we give some simple but conceptually
rich examples that can be usefully analyzed by students.

�1� Consider the circuit of Fig. 6. Switch S establishes a
closed circuit either of area A1 or A1+A2, without the signifi-
cant movement of a conductor during the change of the po-
sition of the switch. Although the rate of change of the cir-
cuit area threaded by a magnetic field can be arbitrarily large,
practically no emf is induced because such a change is not
accompanied by a corresponding movement of a conductor.
Equation �4� gives a null result, whereas finding the area
change might lead to confusion.

�2� An electromagnetic generator is often explained by the
change in the circuit orientation of the magnetic field, as
implied by Eq. �14�. Figure 7 shows two arrangements in-
volving identical changes of circuit orientation which lead to
the creation of different emfs. This asymmetry is caused by
the difference in the movement of the charge carriers �differ-

Fig. 6. A two-loop circuit in a magnetic field B. The switch S can change the
area of the closed circuit from A1 to A1+A2 and back at any frequency, but
almost no emf is induced in the circuit.

Fig. 7. �a� A solid conducting frame placed in a horizontal magnetic field B
changing its orientation from horizontal, P1 to vertical P2. As a result, emf
of induction is created in the circuit. �b� Two rectangular glass tubes are
placed at right angles in a horizontal magnetic field B. The flow of conduct-
ing fluid from the horizontal tube to the vertical tube causes the change of
the circuit orientation as in �a�, but there is no emf of induction �neglecting

Hall voltage across the liquid�.
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ent Am� in the two cases. Equation �4� yields the correct
result in both cases, whereas considering the change in the
circuit orientation might lead to confusion.

�3� A conducting frame is pulled at a constant velocity
through a magnetic field localized in a rectangular area �see
Fig. 8�a��. The usual explanation states that a current is in-
duced and thus there is an induced emf in the loop following
the flux change through the frame as long as the frame enters
into the magnetic field �or leaves it�. When the entire frame
is in the area, the area change argument implies that there is
no current. Although �LE ·dL=0, an induced emf is created
in the frame �the Hall effect�. The failure to recognize the
nonzero effect of the induced voltage in the frame, thus miss-
ing the important physical phenomenon, can be prevented if
we use Eq. �4� instead and integrate around the circuit. Such
a treatment can reveal the equal emfs created in the front
�CD� and in the rear �AB� sides of the frame. This situation
is equivalent to a circuit with two identical batteries con-
nected with opposite polarity. Although no current is pro-
duced, there are voltage differences in parts of the circuit
�see Fig. 8�b��.

�4� An especially interesting case of a commutating mag-
net was presented by Cohn24 and might be considered to be
violating Faraday’s law. The circuit consists of a pair of
spring clips and moves across the body of a magnet �see Fig.
9�a��. When the loop escapes the magnet, the clips rub over
the magnet and the body of the magnet becomes a part of the
circuit. The use of Faraday’s law in the form of Eq. �1� is
misleading and predicts a nonzero emf, because the magnetic
flux through the loop decreases. However, no emf is created.
Faraday’s law in the form of Eq. �4� is again more useful.

Fig. 8. �a� A closed conducting loop ABCD moves with velocity v toward
and through the area with a uniform magnetic field B. In the left position,
motional emf is created along the front side CD, causing electrical current in
the loop. In the second position motional emf is created in the front and rear
sides. There is a potential difference in the loop between the top and bottom
sides, but no current �neglecting the transients� because the net emf around
the loop is zero. �b� Electrical circuit equivalent to the frame ABCD in its
second position, entirely within the magnetic field.
The magnetic field B does not change in time and no charge
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carrier moves through the magnetic field. The segment of the
magnet closing the circuit, which changes at each instant, is
at rest relative to the magnet.25 Note that if the loop were
pulled out of the magnet between the magnetic poles �Fig.
9�b��, a motional emf would be created in the loop.

�5� Consider an isolated conducting wire in the form of the
twisted loop placed in a homogeneous magnetic field B at
right angles to the plane of the circuit �see Fig. 10�. Any
temporal change of the intensity of the magnetic field will
not cause the creation of an induction emf in the circuit in
contrast to reasoning solely on Faraday’s law in the form of
Eq. �1�. An application of Eq. �4�, especially when consider-
ing the area integral, can lead students to learn that the circuit
is, equivalent to a simple circuit of the kind shown in Fig.
8�b�, providing a null result due to the conflict in the polari-
ties of the sources incorporated in each half-loop. This rea-
soning is well known to practitioners needing to produce
noninductive coils.

VI. IMPLICATIONS FOR TEACHING

We recommend that Eq. �4� be used in introductory
courses to clarify the meaning of Faraday’s law of electro-
magnetic induction, which is usually initially expressed in
the form of Eq. �1�. Clarifying to the students the expression
of the magnetic flux derivative, Eq. �3�, introduces two types
of emfs, explicit in Eq. �4�: transformer emf �corresponding
to Maxwell’s equation of electric field circulation� and mo-
tional emf �caused by the Lorentz force�. It is desirable to
discuss by a simple example that the distinction between the

Fig. 9. �a� Clips allow a conducting loop L to escape the magnet. During the
escape, the body of the magnet �a conductor� becomes a segment of the
closed circuit. Although the flux of the magnetic field through the circuit L
decreases, no induction emf is created. �b� The conducting loop L escapes
the magnet between the magnet’s poles. Induction emf is created in the loop.

Fig. 10. A twisted conducting circuit L is placed in a magnetic field B.

Wires cross without electrical contact.
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two contributions is not absolute and varies for different in-
ertial observers. This approach may reveal to the students the
deep meaning of Feynman’s words:

“The flux rule ¼ applies whether the flux changes
because the field changes or because the circuit
moves �or both�. The two possibilities—‘circuit
move’ or ‘field changes’—are not distinguished in
the statement of the rule. Yet in our explanation of
the rule we have used two completely distinct laws
for the two cases.”26

Introducing the area Am in Eq. �16� can guide the appro-
priate choice of the path of integration and correctly incor-
porates the relevant motion of the material segments of the
loop. Such an approach can be useful, especially when con-
sidering open circuits and looking for the area for the mag-
netic flux “passing through” a circuit �see Fig. 11�a��. The
same approach helps to address compound circuits incorpo-
rating elements in relative motion and circuits with a more
complex topology.

If the teacher has a choice of reasoning either by area
�orientation� change or by the Lorentz force, it is important
to note that the latter is more fundamental. For example, the
example of a rod CD sliding on a U-shape conductor in a
magnetic field �see Fig. 11�b�� is often explained by using an
area change argument.27 The explanation using the Lorentz
force might be mentioned as secondary, or even as an alter-
native to Faraday’s law.28 Students’ intuition regarding the
creation of motional emf could benefit from understanding
the Faraday-Maxwell metaphor of cutting lines of magnetic
force as the cause for electromagnetic induction.29 Maxwell
used it to address a carriage sliding along the rails through
the magnetic field of the Earth, with its wheels and axle
comprising a closed circuit.30

Emphasizing subtleties such as the distinction between
complete and partial derivatives in the presentation of the
law of induction, explaining the choice of terms for the path
of integration �loop, contour, circuit, path�, careful elabora-

Fig. 11. �a� A conducting rod L swings around the axis O in a magnetic field
B. �b� A conducting rod CD slides with velocity v over the stationary
U-shaped conductor in a magnetic field B.
tion of the relation between Maxwell’s equation, in the form
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of Eqs. �6� and �18�, and Faraday’s law, Eq. �1�, can all be
useful for students’ understanding of electromagnetic induc-
tion.
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APPENDIX: DERIVATION OF THE EXPRESSION
FOR THE FLUX CHANGE

Here we reproduce the derivation of Eq. �2� for the com-
plete time derivative of the flux through a conducting
circuit.31 We consider a cylindrical surface created by a loop
as moves from its position Lt to a Lt+�t in the space contain-
ing the magnetic field B �see Fig. 1�. To first order, the rate
of flux change results in

��

�t
=

� �
A�t+�t�

B�t + �t�dA −� �
A�t�

B�t�dA

�t

=
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In the absence of sources for magnetic field we obtain

�
A

B · dA =� �
A�t+�t�

B · dA −� �
A�t�

B · dA

+� �
Side

B · dA = 0. �A2�

The first term of Eq. �A1� is
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�t
�

1
=

1

�t�� �
A�t+�t�

B · dA −� �
A�t�

B · dA�
= −

1

�t
� �

Side
B · dA . �A3�

We can further develop the expression for the flux through
the side surface using the vectors shown in Fig. 1 and �r
=v�t:

� �
Side

B · dA = �
L

B · �dL � �r� = �
L

B · �dL � v��t

= �t�
L

�v � B� · dL , �A4�

and thus obtain

���

�t
� = − � �v � B� · dL → � ��

�t
� . �A5�
1 L B=const
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For the second term of Eq. �A1�, we obtain within the
same approximation,

���

�t
�

2
=

� �
A�t�

�B�t�
��t�

�t · dA

�t
=� �

A�t�

�B

�t
· dA

→ � ��

�t
�

v=0
. �A6�

Thus, Eqs. �A5� and �A6� yield the complete derivative of
the magnetic flux in the form of Eq. �3�.

This derivation uses only elementary calculus. Although
this derivation employs a rigid loop, it demonstrates the ori-
gin of the resultant expression of Faraday’s law and enables
us to consider whether the result holds in more sophisticated
cases of open, compound and twisted circuits.
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