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The classical magnetic force on a magnetic dipole depends upon the model for the dipole. The
usual electric current loop model for a magnetic dipole leads to the force F = V(m'B) on a
magnetic dipole m in a magnetic field B. The separated magnetic charge model for a magnetic
dipole leads to the force F = (m+V)B on a magnetic dipole. The latter expression is analogous to
the force experienced by an electric dipole in an electric field. Here, some elementary examples are
given where the force expressions yield entirely different forces on a magnetic dipole.
Electromagnetism textbooks usually do not emphasize the difference between these force
expressions; however, occasionally the difference is important for understanding experimental
results. In the 1930s and 1940s the difference in force expressions was involved in a determination
of the nature of the neutron dipole moment. At present, in the 1980s, the difference in the force
expressions is central to a controversy over an experiment to test the proposed Aharonov—Casher

effect.

L. INTRODUCTION

It is emphasized in electromagnetism textbooks that
many of the results of classical magnetostatics take the
same form as in electrostatics.' For example, the magnetic
field of a magnetic dipole takes the same form as the elec-
tric field of an electric dipole, even though the models for
the dipoles are not at all analogous. Continuing in this vein,
the magnetic force on a magnetic dipole is often treated' as
though it took the same form as the electric force on an
electric dipole. However, the force expressions are actually
quite different. Recently, a controversy in the research lit-
erature related to an ongoing experiment has arisen pre-
cisely because of a failure to distinguish clearly between
these two force expressions for a magnetic dipole. Accord-
ingly, in this article, we wish to discuss this difference in
force expressions. We will consider two different magnetic
dipole models leading to two different classical force ex-
pressions for magnetic dipoles.

II. TWO MODELS FOR MAGNETIC DIPOLES

There are two natural models for a magnetic dipole. The
first, and usual model, is the small electric current loop
description that appears in all the classical electromagne-
tism textbooks. Here, in simplest form, a small current loop
of area A and current / gives a magnetic dipole m = Al
The orientation of the dipole is given by the right-hand rule
connected with the current flow.

The second model for a magnetic dipole is the magnetic
charge analog of the usual electric dipole. Here, in simplest
form, two magnetic monopoles + g are separated by a
small distance 1, giving a magnetic dipole moment m = gl.
The displacement vector ! points from the minus to the plus
magnetic charge.

Both these models for magnetic dipoles lead to the same
dipole magnetic field pattern

B = (uo/477) (3Afem —m), >0, (1)
far from the dipole or in the limit of vanishingly small spa-
tial dimensions for the dipole. However, although the mag-
netic field pattern (1) is common to the two magnetic di-

pole models,” the force experienced by the magnetic dipole
reflects the structure of the dipole, even in the point dipole
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limit. Corresponding to the two different models for mag-
netic dipoles there are two different forces on the dipoles.
The derivations for the force expressions correspond to
those usually given in classical electromagnetism texts for
the electric current loop model of a magnetic dipole and for
the separated charge description of an electric dipole.

HI. FORCE ON THE ELECTRIC CURRENT
MODEL FOR A MAGNETIC DIPOLE

The force on the usual magnetic dipole modeled as a
distribution of electric current is derived in the textbook by
Jackson.? (An alternative elementary derivation involving
not an arbitrary current distribution but an infinitesimal
rectangular current loop is suggested in some textbooks.*)
The force on a small current distribution is obtained by
expanding the external magnetic field in a Taylor series
about the center of the distribution atr =a =0,

F =fJ(r)xB(r)d3r

=J.J(r)x [B(a) + (rV,)B(a) + - ]._o d’r. 2

The notations V, and B(a) have been used to emphasize
the independence of these expressions from the integral in
r.

For current distributions that do not extend to spatial
infinity, it is possible to simplify the force expression (2).
We use the identity

Ve(f3d) =gJVf+ fIVg + fgV+d, (3)
the charge continuity equation
vi= -2, 4)
ot
and the divergence theorem to obtain
o= [ (raxVe+g1%r— e L) a>r. )

We will assume that the electric charge distribution p(r,t)
of the current distribution vanishes in its own rest frame,
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p(r,t) = 0. Then the expression (5) simplifies to

0= [ (f3Vg+g3vf I (6)
For f= 1 and g = x;, this gives

JJ,-(r)d3r=0 (7
and, hence,

(JJ(r)d%) XB(0) =0, (8)

the first term in the integral (2) vanishes.
The second term in the integral (2) involves

3
S e J,-(r)x,d%)(g‘?—Bk(a)) O
a=0

MT=1 a,

where €, is the completely antisymmetric tensor on three
indices with €,,; = 1. Then Eq. (6) with f=x, and g = x,
tells us

J.Ijx, d3r= —JJ,xj d>r,

so that F; can be rewritten as

3
Fi=3 e (%J. (x,J; — ij,)d3r>

k=1

(10)

-
x
2
3

(11)
The integral 15X J d*r is the magnetic dipole moment
m=%frx.ld3r. (12)

(For the case of a planar current loop of area A and current
1, the integral is exactly m = AL) Now from the identity

121 €k €mpy = 0y8im — 8imSiss (13)
Eq. (11) becomes
F, = él [mk (8%,— Bk(a))azo
(e ne), )
(@),
—m;(V,B),_,. (14)

Since V-B=0and m is mdependent of the spatial deriva-
tive, this gives the result’

F = V(m‘B) (15)

for the force on the electric current model of a magnetic
dipole.
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IV. FORCE ON THE MAGNETIC CHARGE
MODEL FOR A MAGNETIC DIPOLE

The magnetic force on the magnetic charge model for a
magnetic dipole follows the usual derivation for the electric
force on an electric dipole. The magnetic force density f for
a magnetic charge density 7(r,t) is f= 7B, analagous to
the electric force density f = pE for an electric charge den-
sity p(r,¢) in an electric field E. The force on a static distri-
bution of magnetic charge 7(r) is

= J‘ n(r)B(r)d>r.

We expand the magnetic field as a Taylor series about the
center of the charge distribution taken asr = a =0,

(16)

=J77(r) [B(a) + rV,B(a) + - J._od’r. (17)

The integral of the first term on the right-hand side corre-
sponds to the total magnetic charge of the distribution. We
assume that the total magnetic charge of the distribution
vanishes so that

f 7(r)d3r=0.

The integral of the second term involves the magnetic di-
pole moment

mzjrn(r)a”r.

(In the case of two-point magnetic monopoles + g sepa-
rated by a distance |, this integral is exactly m = gl.) Then,
from (17) and (19), the force is

= (m-V)B
for the magnetic charge model of a magnetic dipole.

(18)

(19)

(20)

V. THE DIFFERENCE BETWEEN THE TWO
FORCE EXPRESSIONS

Although the force expressions F=V[m-B(r)] and

= (m'V)B(r) corresponding to the different magnetic
dlpole models are different, many textbooks treat them as
though they were the same. We can find how the expres-
sions differ by using the vector identity

V(m'B) =mX(VXB) + BX(VXm)

+ (m'V)B + (B-V)m (21)
together with the fact that m has no r dependence. Then we
obtain

V(m'B) = (m'V)B + mX (VXB). (22)
Comparing Eqgs. (15), (20), and (22), it is clear that the
two different force expressions for the two different mag-
netic dipole models agree if and only if

mXx(VXB) = (23)

For virtually all the examples in the textbooks VXXB = 0
and so no error is made in using the formulas interchange-
ably. However, the force expressions can differ when
VXB=#0. This occurs in steady-state magnetostatics
where J£0 or where the displacement current d E/Jt #0.
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VI. EXAMPLES OF FORCES ON MAGNETIC
DIPOLES

Since electromagnetism textbooks give examples of
forces on magnetic dipoles where the force expressions
agree, here we will give examples only for the situations
where the force equations (15) and (20) for the two mag-
netic dipole models actually differ.

As a first example, we consider a situation with rectan-
gular symmetry. Assume that a uniform current density
J=kJ, along the z axis exists in the region |x|<a,

— o0 <Y< 0,
J(r) = {k""’ || <a, (24)
0, Ix|>a.

Then, using Ampere’s law, the associated magnetic field is
in the y direction,
_ [{ﬂo/ox, |x|<a,
poloa(x/|x]),  |x|>a.
If a magnetic moment m is oriented in the x direction,
m = im, within the region [x| < a, then there is no force on
the electric current loop model for a magnetic dipole,
F=V(miB) =0. (26)
In contrast, there is a force on the magnetic charge model
for a magnetic dipole,
F = (mi-V)B =jmus,, |x|<a. 27)

On the other hand, if the magnetic moment m is oriented in
the y direction, the situation is reversed. Now the electric
current loop model experiences a force

(25)

F =V(m}B) =imud, |x|<a, (28)
and the magnetic charge model experiences no force
F = (mj*V)B =0. (29)

The basis for the discrepancy in the forces is easily under-
stood by going back to the magnetic dipole models using a
rectangular current loop or two separated point monopoles
and seeing just where the forces balance exactly and where
they do not.

Situations with cylindrical symmetry can also be treated.
If a uniform current density J = kJ,, flows in a cylindrical
region of space,

Jo [lAcJo, Vxr + y'<a,
0, W+ >a,
then Ampere’s law gives a magnetic field
B [(IJOJO/Z) =),
(oloa®/2) [(x — )/ (x* + )],

(30)

VX© 4 y7<a,

x4y >a.
(31

Since this situation has azimuthal symmetry, we can take
the magnetic dipole in the x-z plane when evaluating the
forces. Thus for a magnetic dipole in the radial direction
m = im, at x, 0 <x <a, the electric current loop model
gives a force

F=V(miB),_,
= —J(mpuelo/2) = — plmpoly/2), (32)

whereas the magnetic charge model gives a force
F = (miV)B|,_,

=j(mpolo/2) = P(mpeJo/2), (33)
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which is in the opposite direction. Similarly, a magnetic
dipole in the azimuthal direction m = jm gives opposite
forces + Pmuy/y/2 in the radial direction. In performing
the calculations above, rectangular coordinates were inten-
tionally retained until the last step despite the cylindrical
symmetry. This was done because the magnetic dipole m
cannot be regarded as a function of the field coordinate r
when taking the gradient in F = V[m-B(r) ]. If we were to
write m = ?m or m = pm before taking the gradient, we
could easily obtain erroneous results. '

Another example of a discrepancy between the forces is
furnished by considering a magnetic dipole between the
plates of a parallel-plate capacitor that is being charged. In
the region between the plates, VXB=0 and hence the
forces on the two different magnetic dipole models are not
equal. If the capacitor plates are circular of radius R and
separated by a small distance d, d € R, then a current [ to
the capacitor leads to a displacement current in the region
between the plates giving

B = @(uolr/2nR?*), r<R. (34)

This expression for B has the same functional dependence
@r =jx — iyasin Eq. (31), and hence leads to forces of the
same form as found above for a cylindrical current density.
As we saw in Egs. (32) and (33), the forces are different
for the two different models of magnetic dipoles.

VII. THE NATURE OF THE NEUTRON
MAGNETIC MOMENT

Interest in the two alternative models for magnetic di-
poles is not merely pedagogical. In this article, we mention
two research controversies related to the alternative mag-
netic dipole models and their associated forces.

The first controversy® involved the magnetic moment of
the neutron. In 1936, Bloch’ calculated the scattering of
neutrons from ferromagnetic materials while using the
magnetic charge model for the neutron magnetic dipole
moment. The scattering was recalculated by Schwinger®
using the electric current model for the neutron magnetic
moment. Finally, in 1951, two experimental groups report-
ed results®'® in agreement with the electric current model
and in disagreement with the magnetic charge model. The
electric current model is now the usual model for the neu-
tron dipole moment."!

One of the two experiments'® reported in 1951 involved
the glancing reflection of neutrons from the plane surface
of a ferromagnetic material magnetized parallel to the sur-
face. The different predictions for the magnetic force con-
tribution for the reflected neutrons correspond to our Egs.
(15) and (20). The situation is essentially that discussed in
our example above involving rectangular symmetry and a
current flowing in the z direction in the region —a <x<a.
The force expression F = V(m*B) predicts a repulsive or
attractive magnetic force on a neutron polarized parallel or
antiparallel to the magnetic z axis of the iron surface since
m-B has a gradient normal to the surface as m*B increases
by me(1,M), where M is the magnetization inside the ma-
terial. However, the force expression F = (m-V)B predicts
zero magnetic force on a neutron polarized parallel to the
iron surface since B does not change in the direction paral-
lel to the surface. The experimental work confirmed the
existence of the magnetic force contribution and hence es-
tablished the electric current model for the neutron dipole
moment."!
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VIII. THE PROPOSED AHARONOV-CASHER
EFFECT

The failure to distinguish clearly between the two differ-
ent force expressions for magnetic dipoles has alsoled to a
recent controversy regarding an ongoing experiment. In
1984, Aharonov and Casher'? proposed the following ex-
periment. Consider a magnetic moment m, oriented paral-
lel to the z axis, which passes an electric line charge of
charge A per unit length. The line charge is oriented along

the z axis and the magnetic moment m moving with veloc-

ity v = jv parallel to the y axis can pass on either side of the
line charge along x = + d. Aharonov and Casher'? pro-
posed that there is a quantum interference pattern shift
proportional to the product mA of the magnetic moment m
and the charge per unit length A for particle beams that
pass around opposite sides of the line charge. An experi-
ment to detect the interference effect is currently under
way by a University of Missouri—University of Melbourne
group'? using a beam of neutrons and a Bonse—Hart perfect
silicon crystal interferometer.

The Aharonov—Casher proposal was suggested as hav-
ing a “duality”'? with the famous Aharonov—Bohm effect,
where one is said to find quantum interference pattern
shifts in the absence of classical forces. In the proposed
Aharonov—~Casher effect, the interference pattern was
claimed to change due to the line charge A despite the fact
that the magnetic moment m experienced no classical force
due to the line charge. The suggestion that no classical
force acted on the magnetic dipole was made based upon an
ad hoc Lagrangian proposed by Aharonov and Casher. '

From the discussion above we see that there are two pos-
sible force expressions for a magnetic dipole; which force is
appropriate depends upon the model used for the magnetic
dipole. When one derives forces from an ad hoc Lagran-
gian, it is not clear whether one has used the electric cur-
rent model for a magnetic dipole or the magnetic charge
model. However, one can easily calculate the classical elec-
tromagnetic forces for the two magnetic dipole models by
using the force expressions (15) and (20).

The electric line charge A produces an electrostatic field
in its own rest frame,

E =/ /2me,r, (35)

where r' =ix’ +jy' is the displacement from the line
charge oriented along the 2’ axis. In an inertial frame in
which the line charge is moving with velocity — v = — ju,
the line charge 4 located instantaneously at x =0, y = 0
produces a magnetic field (to first order in v/c),'*

B= —c—"z}‘XE

_ —Hes (?x +})')
= X A
2 Y X247

l‘é,uoxv/l
= 36
2m(x* 4 y?) (30)
where o€, = c~2 A magnetic dipole m = km oriented
along the z direction and at rest at the point (x,y,z) will
experience a force in the electric current model for the mag-
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netic dipole
F=V(mB)

= (’l\i +}i + ]} i) —/.Lotzxviz
dx dy 9z/ 2m(x* 4+ y°)
_ pomvd 107 — x%) — J2xy
2 (x* +y%)?
On the other hand, in the magnetic charge model for the
magnetic dipole, the force is calculated as

F=(mV)B

_mi(_.’M)zo, (38)
Iz \2m(x* + %)

This second vanishing force agrees with the claim by Ahar-
onov and Casher using their ad hoc Lagrangian.

Thus here in this situation under experimental investiga-
tion the two different models lead to two different forces.
The usual model for magnetic dipoles in atomic and nu-
clear physics is the electric current model. Using this model
there is a force on the magnetic dipole, contrary to the
claim of Aharonov and Casher. Indeed using the electric
current model for a magnetic dipole, the effect predicted by
Aharonov and Casher can be understood in detail'> as an
effect based upon classical electromagnetic forces.

(37)

IX. CLOSING SUMMARY

Although classical electrostatics and classical magneto-
statics have many similarities in their formal structure,
they also have important differences. Electrostatics is
based upon the existence of electric charges while magne-
tostatics is usually based upon electric currents with
V-B = 0 rather than upon magnetic charge distributions
with V:B50. In electromagnetism textbooks, it is empha-
sized that the electric current model for a magnetic dipole
gives rise to precisely the same form of magnetic field as an
electric charge distribution model for an electric dipole
gives for the electric field. However, it is not emphasized
that the magnetic force experienced by the electric current
model for a magnetic dipole has a form distinctly different
from the electric force experienced by an electric charge
distribution model for an electric dipole.

In this article, we have emphasized the differences in
forces experienced by magnetic dipoles depending upon
the detailed model for the dipole. The usual electric current
model for a magnetic dipole m leads to a force
F = V(m:B). A magnetic charge model for a magnetic di-
pole m leads toa force F = (m+V)B; this is of the same form
as for the electric force on an electric dipole. Here, we have
given some elementary examples where these force expres-
sions give different answers for the force on a magnetic
dipole. The difference in the force expressions is relevant in
the proposed Aharonov—-Casher effect, which is currently
under experimental investigation.

ACKNOWLEDGMENTS

I wish to thank Professor Harry Soodak and Professor
Martin Tiersten for helpful discussions and for encourage-
ment in connection with the controversy over the Ahar-
onov—Casher effect. Professor Samuel Werner made me
aware of the controversy over the nature of the neutron
magnetic moment when he sent me a copy of the article by
F. Mezei (Ref. 6). I wish to thank Professor Werner for

Timothy H. Boyer 691



this assistance and for his continued kindness in connec-
tion with the Aharonov-Casher proposal.

'See, for example, the remarks by D. J. Griffiths, Introduction to Electro-
dynamics (Prentice-Hall, Englewood Cliffs, NJ, 1981), p. 221.

?The average fields for the two cases are different when averaged over a
spherical volume including the dipole at the center. See J. D. Jackson,
Classical Electrodynamics (Wiley, New York, 1975), 2nd ed., pp. 139~
141 and pp. 183-184. See also D. J. Griffiths, Am. J. Phys. 50, 698
(1982).

3]. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd
ed., p. 185.

4See, for example, Ref. 1, p. 222, Problem 4. Note that this problem
requires VX B = O for the stated solution.

5This is Jackson’s result in Ref. 3, p. 185, Eq. (5.69).

®The controversy is described by F. Mezei, Physica B 137, 295 (1986).
See also the account by J. D. Jackson, CERN Report 77-17 Theory

Perfect disturbing measurements

Toru Ohira and Philip Pearle
Hamilton College, Clinton, New York 13323

Division, 1 September 1977.

"F. Bloch, Phys. Rev. 50, 259 (1936). See also Phys. Rev. 51,994 (1937)
for Bloch’s description of the controversy in terms of alternative models
for the neutron magnetic moment.

8J. Schwinger, Phys. Rev. 51, 544 (1937).

°C. G. Shull, E. O. Wollan, and W. A. Strauser, Phys. Rev. 81, 483
(1951).

'D. J. Hughes and M. J. Burgy, Phys. Rev. 81, 498 (1951).

""Indeed J. D. Jackson has shown that all known intrinsic magnetic mo-
ments (of electron, muon, proton, neutron, nuclei) are caused to very
high precision by circulating electric currents and not by magnetic
charges; see Jackson’s report mentioned in Ref. 6. I wish to thank Pro-
fessor Jackson for sending me a copy of his CERN report.

12y, Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).

3This group consists of S. A. Werner, H. Kaiser, and M. Arif at Missouri
and A. G. Klein, A. Commino, and G. 1. Opat at Melbourne.

'“See, for example, Ref. 3, p. 3, p. 552, Eq. (11.148).

'ST. H. Boyer, Phys. Rev. A 36, 5083 (1987).

(Received 14 October 1986; accepted for publication 2 November 1987)

The Wigner—Araki-Yanase theorem is often interpreted as meaning that there must be an error in
measurement under certain conditions (when the commutator C between an additive conserved
quantity and the discrete-spectrumed measured quantity does not vanish), and that the error may
only be reduced by increasing the size of the apparatus. By explicit example, it is shown that it is
possible to have a perfectly accurate measurement if the system being measured is disturbed,
regardless of the size of the apparatus. Also illustrated is how the error in an imperfectly accurate
measurement may be reduced by decreasing the magnitude of C, without affecting the size of the

apparatus.

L. INTRODUCTION

The quantum theory of measurement concerns the inter-
action between an apparatus and a system being measured,
which results in the apparatus changing from its initial
state to a new state determined by a property of the system.
In an “ideal” measurement, the apparatus records the sys-
tem’s property with perfect accuracy and the system state
is not disturbed: We shall call this a perfect nondisturbing
measurement. However, in certain very common circum-
stances (to be detailed below), Wigner' and Araki and
Yanase’ (WAY theorem) proved that it is impossible to
have a perfect nondisturbing measurement. Following this,
Arakiand Yanase and subsequent authors (Yanase,? Ghir-
ardi ef al*) studied imperfect nondisturbing measure-
ments, where the apparatus does not measure the system
property with perfect accuracy, but when the measurement
is correct the system is not disturbed. They showed how the
error can be made arbitrarily small if the apparatus is made
arbitrarily large.
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Wigner himself wrote,” “It can even be shown that no
observable which does not commute with the additive con-
served quantities. . .can be measured precisely. . .,” and in-
deed the WAY theorem is often interpreted as meaning
that a perfect measurement is impossible, in spite of the fact
that the theorem only proves that a perfect nondisturbing
measurement is impossible. However, in an article dealing
with various aspects of the WAY theorem, Stein and Shi-
mony® suggested the existence of perfect disturbing mea-
surements. We believe that this possibility of a perfectly
accurate measurement that disturbs the system, as a means
of “getting around” the WAY theorem, is not as well
known as it should be. We shall define a perfect disturbing
measurement somewhat more narrowly than the category
introduced by Stein and Shimony, and show by two simple
examples that perfect rotally disturbing measurements (in
which initially orthogonal system state vectors end up par-
allel) and perfect partially disturbing measurements (in
which initially orthogonal system state vectors end up non-
orthogonal, but nonparallel) are possible.
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