
Lesson 4

Radiation

So far these notes have treated phenomena associated with electric charges that are either
moving at constant velocity or flowing steadily through wires. The next level of complica-
tion involves sudden changes in the motion of charge. This is a very rich area for study,
which could lead us into alternating currents, time-dependent magnetic fields, and the
rest of Maxwell’s equations. In the interest of brevity, however, I will go straight to the
situation that I find most interesting of all: a point charge that undergoes a sudden change
in motion (acceleration), and the electric field produced by this accelerated charge.

4.1 The Field of an Accelerated Charge

Recall from Section 1.2 that when a point charge moves at constant velocity, its electric field
always points directly away from it, as shown in figure 1.5. (I’ll assume for convenience
that the point charge is positive.) In light of special relativity theory, this may seem
strange, since no information can travel faster than the speed of light. Why then does the
field at some faraway place point directly away from where the charge is now, rather than
from where it was some time ago? Does this imply that information about the motion of
the charge travels instantaneously throughout the whole universe? Well, not necessarily.
You see, the particle has been traveling at constant velocity, along a predictable course,
for some time. So if you’re at a faraway place, you could have arranged for the particle
to send you information about its position and velocity some time ago, so that when you
receive this information you can extrapolate its motion from the past into the present and
figure out where it must be by now.

Your scheme for predicting the position of the particle would be ruined, however, if the
particle undergoes some acceleration between when it sends you the information and the
present. You would think that the particle had continued to travel at constant velocity,
and the field at your location would point away from where the particle would be now if
it had done so, but in fact the particle is not there. For instance, suppose the particle is
initially traveling to the right at 1/4 the speed of light, then suddenly bounces off a wall
and recoils back to the left at the same speed (see figure 4.1). After one second, the news
of the bounce can’t have traveled farther than one light-second (300,000 km). If you’re
closer than one light-second to the location of the bounce then you’ve already received the
news, and the field at your location points away from where the particle is now. But if
you’re farther than one light-second from the location of the bounce then the news hasn’t
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Figure 4.1. A positively charged particle, initially traveling to the right at 1/4 the
speed of light, bounces off a wall at point B. The particle is now at point A, but if
there had been no bounce it would now be at C. The circle (actually a cross section of
a sphere) encloses the region of space where news of the bounce has already arrived;
inside this circle (as at D) the electric field points directly away from A. Outside the
circle (as at E) the news has not yet arrived, so the field points directly away from C.
As time passes the circle expands outward at the speed of light, and points A and C
move away from B at 1/4 the speed of light.

reached you yet, and the field at your location points away from where the particle would
be now if there had been no bounce.

In this section I will assume that some mechanism like this, or at least equivalent to this,
actually operates. We know from special relativity that no information can travel faster
than the speed of light. I’ll assume the best possible case: that the information travels at
precisely the speed of light, but no faster. This assumption, together with Gauss’s law, is
enough to determine the electric field everywhere around the accelerated charge, and that
is the goal of this section.

The complete map of the electric field of an accelerated charge turns out to be fairly
complicated. Rather than representing the field as a bunch of arrows (like the two shown
in figure 4.1), it is much more convenient to use a more abstract representation in terms of
field lines. Field lines are continuous lines through space that run parallel to the direction
of the electric field. A drawing of the field lines in a region therefore tells us immediately
the direction of the electric field, although determining its magnitude is not so easy. A
map of the field lines for the situation of figure 4.1 is shown in figure 4.2.

I have not drawn any field lines through the gray spherical shell in figure 4.2, since this
is the region that is just in the midst of receiving the news of the particle’s acceleration. To
determine the direction of the field here, imagine a curved Gaussian “pillbox”, indicated
by the dashed line in the figure, which straddles the gray shell. (This surface is meant to be
symmetrical about the line along which the particle is moving; viewed from along this line,
it would be circular.) The Gaussian surface encloses no electric charge, so Gauss’s law tells
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Figure 4.2. A map of the electric field lines for the same situation as in figure 4.1.
The direction of the field within the gray spherical shell can be found be considering
the flux through the curved Gaussian “pillbox” indicated by the dashed line.

us that the total flux of �E through it must be zero. Now consider the flux through various
parts of the surface. On the outside (right-hand) portion there is a positive flux, while on
the inside (left-hand) portion there is a negative flux. But these two contributions to the
flux do not cancel each other, since the field is significantly stronger on the outside than on
the inside. This is because the field on the outside is that of a point charge located at C,
while the field on the inside is that of a point charge located at A, and C is significantly
closer than A. The net flux through the inside and outside portions of the surface is
therefore positive. To cancel this positive flux, the remaining edges of the pillbox must
contribute a negative flux. Thus the electric field within the gray shell must have a nonzero
component along the shell, in toward the center of the Gaussian surface. I will refer to
this component as the transverse field, since it points transverse (i.e., perpendicular) to
the purely radial direction of the field on either side.

Exercise 4.1. Use a similar argument to determine the direction of the electric
field within the portion of the gray shell on the left side of figure 4.2.

To be more precise about the direction of the field within the gray shell, consider the
modified Gaussian surface shown in figure 4.3. Here I have shrunk the outer surface ef
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Figure 4.3. Another Gaussian surface applied to the same electric field as in fig-
ure 4.2. Since the flux along segment cd must be zero, the electric field within the
gray shell must be parallel to this segment.

until it subtends the same angle, as viewed from C, that the inner surface ab subtends as
viewed from A. Now the fluxes through ab and ef do indeed cancel. Segments bc and de
are chosen to be precisely parallel to the field lines in their locations, so there is no flux
through these portions of the surface. In order for the total flux to be zero, therefore, the
flux must be zero through segment cd as well. This implies that the electric field within the
gray shell must be parallel to cd. If you start at A and follow any field line outward, you
will turn a sharp corner at the gray shell’s inner edge, then make your way along the shell
and slowly outward, turning another sharp corner at the outer edge. (The thickness of the
gray shell is determined by the duration of the acceleration of the charge.) A complete
drawing of the field lines for this particular situation is shown in figure 4.4.

Exercise 4.2. Sketch the field lines for a point charge that undergoes each of the
following types of motion. (a) The charge moves to the right at 1/4 the speed of
light, then suddenly stops. (b) The charge is initially at rest, then suddenly begins
moving to the right at 1/4 the speed of light. (c) The charge is initially moving
to the right at 1/2 the speed of light, then suddenly slows down to 1/4 the speed
of light without changing direction. (d) The charge is bouncing back and forth,
at 1/4 the speed of light, between two walls. (e) The charge is initially moving
to the right at 1/4 the speed of light, then makes a sharp 90 degree turn without
changing speed.

The transverse portion of the electric field of an accelerated charge is also called the
radiation field, because as time passes it “radiates” outward in a sphere expanding at the
speed of light. If the acceleration of the charged particle is sufficiently great, the radiation
field can be quite strong, affecting faraway charges much more than the ordinary radial
field of a charge moving at constant velocity. The radiation field can also store a relatively
large amount of energy, which is carried away from the charge that created it. In the next
section I will justify these claims by deriving a formula for the strength of the radiation
field.
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Figure 4.4. A complete sketch of the electric field lines for the situation shown in the
preceding figures, including the transverse radiation field created by the acceleration
of the charge.

4.2 The Strength of the Radiation Field

To turn the qualitative ideas of the previous section into quantitative formulas, let us
consider a somewhat simpler situation, in which a positively charged particle, initially
moving to the right, suddenly stops and then remains at rest. Let v0 be the initial speed
of the particle, and let the deceleration begin at time t = 0 and end at time t = t0. I’ll
assume that the acceleration is constant during this time interval; the magnitude of the
acceleration is then

a = |�a| =
v0

t0
. (4.1)

I’ll also assume that v0 is much less than the speed of light, so that the relativistic com-
pression and stretching of the electric field discussed in Section 1.2 is negligible.

Figure 4.5 shows the situation at some time T , much later than t0. The “pulse” of
radiation is contained in a spherical shell of thickness ct0 and radius cT . Outside of this
shell, the electric field points away from where the particle would have been if it had kept
going; that point is a distance v0T to the right of its actual location. (The distance that
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Figure 4.5. Figure for determining the strength of the electric field within the pulse
of radiation. For clarity, only a single field line is shown here.

it traveled during the deceleration is negligible on this scale.) A single field line is shown
in the figure, coming out at an angle θ from the direction of the particle’s motion. There
is a sharp kink in this line where it passes through the shell, as discussed in the previous
section. We would like to know how strong the electric field is within the shell.

Gaussian
pillbox

�E

Er

Et

Figure 4.6. Close-up of the kink in the field in figure 4.5. The radial component Er

of the kinked field can be found by applying Gauss’s law to the pillbox shown.
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Let’s break the kinked field up into two components: a radial component Er that points
away from the location of the particle, and a transverse component Et that points in the
perpendicular direction (see figure 4.6). The ratio of these components is determined by
the direction of the kink; from figure 4.5 you can see that

Et

Er
=

v0T sin θ

ct0
=

aT sin θ

c
. (4.2)

We can find the radial component Er by applying Gauss’s law to a tiny pillbox that
straddles the inner surface of the shell (see figure 4.6). Let the sides of the pillbox be
infinitesimally short so that the flux through them is negligible. Then since the net flux
through the pillbox is zero, the radial component of �E (that is, the component perpendic-
ular to the top and bottom of the pillbox) must be the same on each side of the shell’s
inner surface. But inside the sphere of radiation the electric field is given by Coulomb’s
law. Thus the radial component of the kinked field is

Er =
1

4π�0

q

R2
, (4.3)

where q is the charge of the particle. Combining equations (4.2) and (4.3) and using the
fact that R = cT , you should now be able to show that

Et =
qa sin θ

4π�0c2R
. (4.4)

Exercise 4.3. Although I’ve derived formula (4.4) for the special case where the
particle’s final velocity is zero, it is true much more generally. To convince yourself
of this, consider the case where the particle is initially at rest, then receives a sudden
kick to the right. Draw a picture analogous to figure 4.5, and follow the same
reasoning to arrive at equation (4.4). (Depending on your choice of coordinates,
you may find an additional minus sign.)

Equation (4.4) tells us all we need to know about the strength of the pulse of radiation.
First, note that the transverse field is proportional to 1/R, not 1/R2. This means that
as time goes on and R increases, the transverse field becomes much stronger than the
radial field; at very large distances the radial field can be completely neglected and the
field is purely transverse. Second, consider the dependence of Et on the angle θ: It is
weakest along the direction of motion (θ = 0 or 180◦) and strongest at right angles to
the motion (θ = 90◦). Looking back at figure 4.4, we see that the size of the kink in the
field is a qualitative indication of the field strength. Finally, notice that the strength of
the transverse field is proportional to a, the magnitude of the particle’s acceleration. The
greater the acceleration, the stronger the pulse of radiation.

This pulse of radiation carries energy. Recall from electrostatics that the energy per
unit volume stored in any electric field is proportional to the square of the field strength.
In our case, this implies

Energy per unit volume ∝ a2

R2
. (4.5)
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Since the volume of the spherical shell (the shell itself, not the region it encloses) is propor-
tional to R2, the total energy it contains does not change as time passes and R increases.
Thus when a charged particle accelerates, it loses energy to its surroundings, in an amount
proportional to the square of its acceleration. This process is the basic mechanism behind
all electromagnetic radiation: visible light and its invisible cousins, from radio waves to
gamma rays. Lesson 5 discusses a few applications of this all-important result.

4.3 The Larmor Formula

In this section I will derive a precise formula for the energy radiated by an accelerated
charged particle. You’ve already read the most important part of the derivation, which
ended with equation (4.4). The rest is mostly math.

The energy per unit volume stored in any electric field is

Energy per unit volume =
�0
2
| �E|2. (4.6)

Once the pulse becomes large enough we can neglect the radial component of the field and
simply plug in Et for | �E|. The result is

Energy per unit volume =
q2a2 sin2 θ

32π2�0c4R2
. (4.7)

Notice again that this formula is largest when θ = 90◦.

If we don’t care about the direction in which the energy goes, it is convenient to average
equation (4.7) over all directions. I’ll do this using a mathematical trick. Introduce a
coordinate system with the origin at the center of the sphere and the x axis along the
particle’s original direction of motion. Then for any point (x, y, z) on the spherical shell,
cos θ = x/R. Using angle brackets � � to denote an average over all points on the shell, I
claim that

�sin2 θ� = �1 − cos2 θ� = 1 − �x2�
R2

. (4.8)

Now since the origin is at the center of the sphere, you must certainly agree that the
average value of x2 is the same as the average value of y2 or z2:

�x2� = �y2� = �z2�. (4.9)

But this implies that

�x2� =
1
3
�x2 + y2 + z2� =

1
3
�R2� =

R2

3
, (4.10)

since x2 + y2 + z2 = R2 and R is constant over the whole shell. Combining equations (4.8)
and (4.10) gives

�sin2 θ� = 1 − R2

3R2
=

2
3
. (4.11)
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So the average energy per unit volume stored in the transverse electric field is

Average energy per unit volume =
q2a2

48π2�0c4R2
. (4.12)

To obtain the total energy stored in the transverse electric field, we must multiply
equation (4.12) by the volume of the spherical shell. The surface area of the shell is 4πR2

and its thickness is ct0, so its volume is the product of these factors. Therefore the total
energy is

Total energy in electric field =
q2a2t0
12π�0c3

. (4.13)

Notice that the total energy is independent of R; that is, the shell carries away a fixed
amount of energy that is not diminished as it expands.

Now, in order to be completely precise, I have to cheat. So far I’ve discussed only
the electric field of the accelerated charge. But it turns out that there is also a magnetic
field, which carries away an equal amount of energy. Since I’ve omitted so many details
about magnetic fields from these notes, I have no way of justifying this claim. An error
of a factor of 2 would hardly matter for the applications we’ll be considering anyway, but
I think it’s better to go ahead and put it in for the record. Thus the total energy carried
away by the pulse of radiation is twice that of equation (4.13), or

Total energy in pulse =
q2a2t0
6π�0c3

. (4.14)

It is usually more convenient to divide both sides of this equation by t0, the duration
of the particle’s acceleration. The left-hand side then becomes the energy radiated by the
particle per unit time, or the power given off during the acceleration:

Power radiated =
q2a2

6π�0c3
. (4.15)

This result is called the Larmor formula, since it was first derived (using a more difficult
method) by J. J. Larmor in 1897. The derivation given here was first published by J. J.
Thomson (discoverer of the electron) in 1907. Although I have derived it for the special
case where the final velocity of the particle is zero, the Larmor formula is true for any sort
of accelerated motion provided that the speed of the particle is always much less than the
speed of light.


